mage: Fluid Moves Between Code and Graphical Work in
Computational Notebooks

Mary Beth Kery Donghao Ren Fred Hohman
Carnegie Mellon University Apple Inc. Georgia Institute of
mkery @cs.cmu.edu donghao@apple.com Technology

fredhohman @ gatech.edu
Dominik Moritz Kanit Wongsuphasawat Kayur Patel
Apple Inc. Apple Inc. Apple Inc
domoritz@apple.com kanitw @apple.com kayur@apple.com
standard notebook 1 mage : user edits table 2 mage : edits reflect in code
df.head() %summon table df
column_names = 1list(df)
age ¥ workclass ¥ fnlwg age v | workclass ¥ fnlwgt ¥ column names .pop(6)
0 90 ? 7705 0 9 2 77053 column_names.insert(1, "oc
' 7 OCCUP%@” - df = df.reindex(columns=col
1 82 Private 13287 1 82 ate 132870 %summon table df
2 66 2 1860¢ 2 66 ? 186061 .
age ¥ occupation ¥ workclass
3 54 Private 1403¢ 3 54 Private 140359 0 90 2 2
4 M Private 2646¢ 4 41 Private 264663 1 82 manaléégigl Private

Figure 1: In a standard computational notebook, running code to refer to a data table df outputs a view-only rendering of the table.
In a notebook powered by mage, the table is an interactive interface that the user can manipulate (1). When a user repositions a
column in the interface (1), mage also automatically updates the code to reflect the change caused by the interaction (2).

ABSTRACT

We aim to increase the flexibility at which a data worker can
choose the right tool for the job, regardless of whether the
tool is a code library or an interactive graphical user interface
(GUI). To achieve this flexibility, we extend computational
notebooks with a new API mage, which supports tools that can
represent themselves as both code and GUI as needed. We dis-
cuss the design of mage as well as design opportunities in the
space of flexible code/GUI tools for data work. To understand
tooling needs, we conduct a study with nine professional prac-
titioners and elicit their feedback on mage and potential areas
for flexible code/GUI tooling. We then implement six client
tools for mage that illustrate the main themes of our study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST 20, October 20-23, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415842

findings. Finally, we discuss open challenges in providing
flexible code/GUI interactions for data workers.

Author Keywords
Data Science Programming; Machine Learning Programming;
Handoff; Computational Notebooks;

CCS Concepts
*Human-centered computing — Human computer inter-
action (HCI);

INTRODUCTION

Data work is a complex domain where practitioners coming
from diverse areas of expertise rely on a mix of tools to con-
duct their work [8, 13, 14]. Although code is the defacto power
tool of choice for many professional data workers, graphical
user interface (GUI) tools have an important role as well: chart-
ing tools, dashboards, and spreadsheets are all examples of
pervasive forms of GUI tools for data work [8, 13, 14]. Graph-
ical user interactions can provide easier inroads to novices,
providing benefits such as recognition over recall [12], and are
simply more practical for certain tasks, such as labeling image

data. In this paper, we aim to create an analysis environment
where data workers have the flexibility to combine the com-
plementary strengths of GUI and code and choose “the right
tool for the job”.

Computational notebooks make an ideal testbed for our re-
search, as they are already set up for the purpose of blending
mixed media with code. A notebook is designed as a series
of “cells” that form a single document: cells of code, cells of
text, and cells of output of various formats [17]. This inter-
active document format has made notebooks highly popular.
Notebooks have been lauded by the scientific programming
community for introducing new standards for replicability and
understanding of data work — because explanations, code,
and output can be read and executed together in one place [17,
20, 21, 25]. However, aside from standard application menus
and panes that live in the periphery of a user’s notebook docu-
ment, today’s notebooks put strong restrictions on the kinds
of GUI widgets supported within documents. There is no
such thing as a “GUI” cell. Today’s community-created wid-
gets are displayed in output cells, and include a variety of
sliders, buttons, or visualizations that provide some, but very
limited, forms of work. More deeply blending programming
with GUI-based work in notebooks presents technical and de-
sign challenges, but, we argue, is a natural area of growth for
notebooks towards supporting full workflows in one place.

It should be noted that many recent examples from research
and practitioner communities point to a desire to move note-
books and data computation in blended GUI/code directions.
Tools such as Wrangler [15], Wrex [6], Chartio, bamboolib,
and qgrid! all focus on providing flexible GUI or code edit-
ing for data transformation in tables. As data tables is the
canonical use case for so many of these tools, we demonstrate
its appeal in Figure 1. In Figure 1, the user sees a standard
notebook computation where code output is a preview of a
data table. As with most standard program output, notebook
output is static and final, so the user is allowed to edit their
table within code only. Alternatively, in Figure 1.1 suppose
the notebook did offer GUI work in output. The user sees
an interactive data sheet widget, where they can perform di-
rect manipulation interactions as they would in spreadsheet
software. Simply putting an interactive data sheet into the
notebook is an imperfect solution, however, since data sheets
don’t produce a visible record of actions like code does and for
this reason are notoriously prone to user mistakes [22]. This
limitation can be overcome by combining GUI with code: the
user edits the data sheet widget via direct manipulation while
their actions are simultaneously reflected into auto-generated
code (Figure 1.2), providing a repeatable record. Combining
both GUI and code modalities gives users the complementary
strengths of each as well as choice. The user is free to write
code directly for some tasks or use direct manipulation to
generate code for other tasks, as is most comfortable to them.

I'Spreadsheet widgets bamboolib or qgrid both generate some form
of code within notebooks. Outside notebooks, Chartio has a visual
table approach to forming SQL queries that also generates code.

Our goal in this research is to design a generalized way to
support a flexible GUI/code paradigm into a broad new class
of data work tools. Our contributions are:

1. mage: A generalized application programming interface
(API) mage that can power tools to move fluidly between
code and GUI in a notebook. We discuss the design needs
and tradeoffs for the API as well as how tool builders can
integrate their work with mage.

2. Demonstrating Design Space in Tools: We implement six
example notebook widgets to support data workers on tasks
from machine learning to visualization support, powered
by mage. We use these tools to illustrate key themes in the
kinds of toolings that flexible GUI/code ability enables.

3. Practitioners Reflecting on the Design Space: To broaden
our understanding of a flexible GUI/code tooling design
space, we conduct an exploratory study with nine profes-
sional data works to gain their feedback and needs for the
kinds of GUI/code tooling that might assist their daily work.

Next, we discuss the API design of mage as grounded in prior
work and needs specific to a general-use API.

PRIOR WORK & DESIGN CONSTRAINTS

Aside from data table transformation work mentioned [6, 15],
prior work in flexible GUl/code work systems has focused on
visual domains, such as drawing [11], UI design [10], data
visualizations [1], and commercial 3D modeling software.
As these systems use various strategies for combining GUI
with code, here we outline key design dimensions where mage
draws upon, improves, or departs in key ways from prior work.

Allowing a user to make edits via GUI or code interchange-
ably in a live environment requires additional coordination
in the underlying system. As the user works, a system must
be able to keep both code and GUI synchronized based on a
shared underlying state. Take for example a drawing app: if
the user drew a star using a pen widget, the code for that draw-
ing should update accordingly to represent a star. If the user
then wrote code to make the star blue, the star and widgets on
screen should update accordingly to show the blue star. Syn-
chronizing between GUI actions and code edits becomes more
complex the more power we give users to edit GUI and code
interchangeably. Why? User actions in GUIs can have am-
biguous or multiple possible translations to code. For instance,
if a user pastes in a rotated star, is the star rotated positive 200
degrees or negative 160 degrees? User action in code come
with the risk of there not being a GUI equivalent for that action.
For instance, if the user writes mathematical constraints on
their star shape, how should the GUI interface behave if it has
no widget behavior built-in to represent constraints [11]?

For these reasons, common approaches carefully limit the ex-
pressiveness of what a user can do. One such approach, which
is built-in for notebooks today?, is parameterization. Parame-
terization allows users to designate variables in code that they
can then change at runtime through sliders and other widgets.
However, parameterization in the notebook today typically

2ipyWidgets https://github.com/jupyter-widgets/ipywidgets

https://bamboolib.8080labs.com
https://github.com/quantopian/qgrid
https://chartio.com/blog/why-we-made-sql-visual-and-how-we-finally-did-it/
https://chartio.com/blog/why-we-made-sql-visual-and-how-we-finally-did-it/
https://github.com/jupyter-widgets/ipywidgets

only changes the runtime value of a variable and does not af-
fect the value of the variable in written code®. This means that
all GUI-based tuning only lasts for the current runtime session
and is lost between sessions [10]. By generating output code
based on user interaction, mage can help parameterization
widgets address this pitfall and better match a key design ethos
of notebooks to support replicability [17].

Beyond simple parameterization, another approach to bal-
ance between code expressivity and ambiguity is the use of a
domain-specific language (DSL) where the creators carefully
author mappings between a DSL and GUI actions [1, 15, 11].
Thus, for any action that the user takes, there is an equal rep-
resentation of that action in both the code and GUIL. However,
every DSL is by definition designed for a specific task. Prime
examples of DSLs in the data analysis space occur in commer-
cial analysis platforms such SAS or JIMP*. Both SAS and JMP
are extensive GUI-based analysis tools fully compatible with
code, but at the cost that all code must be in SAS’s own or
JMP’s own bespoke DSL. As everyday data work involves in a
myriad of tasks in a variety of programming languages, tying
to just a single DSL conflicts with mage’s goal as a general
platform to enable a variety of tools. As a result, the mage API
does not directly use any DSL, but instead allows fool builders
to use DSLs in their own tools where appropriate. For exam-
ple, our implementation of a plotting tool uses Vega-Lite [24]
as the underlying representation for the charts.

Many systems have also used a programming by demonstra-
tion (PBD) approach to infer a correct mapping between what
a user does in a GUI interface, and what the appropriate code
to represent that should be [11, 6, 15, 9]. PBD has the ben-
efit that, when carefully designed, it can ensure high-quality
generated code synthesized fast enough to work in real time
interactive applications [6, 9]. Again, however, we find the
generality goals of mage’s API are at odds with this approach.
PBD, like domain specific languages, must be designed and
tailored to a specific application, which is not feasible if mage
must generalize to any data work application by any tool au-
thor. Again, a fool builder could use PBD where appropriate
internally for their own tool, and their tool would be fully com-
patible to use with the mage API. The tension with generality
is that the mage API itself cannot provide all the benefits of a
PBD or DSL approach out-of-the-box, putting more effort on
tool builders if they want to leverage these approaches.

As a departure from prior research, the goal of mage is not
building a single highly flexible GUI/code tool, but rather
creating a platform for an ecosystem of tools. Unlike a single
closed system, like Sketch-n-Sketch for SVG editing [11], we
cannot precisely model how a widget built with mage will
affect state. Sketch-n-Sketch contributed a complete and live
1-1 mapping between GUI and code. This mapping meant
that code updates in realtime to reflect actions within the GUI,

3Note that parameterization widgets can change code in some spe-
cific code editors, often for simple number or color variables. One
implementations of notebooks that allows this is Carbide https:
//alpha.trycarbide.com

4SAS https://www.sas.com/en_us/home.html and JMP https://
www. jmp.com/en_us/home.html are primarily GUI-based statistics
and data analysis platforms that also support code in their own DSLs.

and conversely the GUI can update in realtime to reflect users’
direct edits to the code. This flexibility to interact with either
code or GUI in realtime is what we hope tools built with
mage can enable. Next, we discuss how we design mage to
achieve this goal, given the constraints that mage will not
know precisely how any widget will behave.

MAGE SYSTEM OVERVIEW

The goal of mage is an API that any tool builder can use to
make their GUI widget flexibly communicate back and forth
with user code and state in a computational notebook. To
facilitate this, mage is implemented as a Jupyter Notebook
extension®. Since a Jupyter Notebook is itself a web app, mage
is partly written in JavaScript to communicate with Jupyter
APIs. As our prototype system focuses on Python notebooks,
some elements of mage are written in Python.

Next, we use the table tool from Figure 1 as a use case to
demonstrate how mage works, and how a tool creator can add
bidirectional GUI/code communication to their widget:

Getting Started

table: Imagine the creator of table wants to make an inter-
active spreadsheet-like tool that can be used to transform data
in the notebook. They start by designing and building a small
web app for the table UI (we built table’s Ul as a single-page
React app®). The UI for the tool widget can be developed en-
tirely outside the notebook at this phase, by using placeholder
data (e.g. a cars sample dataset to display in table) for what
will later be data coming from the notebook user.

mage: The mage API first requires configuration. A client
tool provides its name, its parameter requirements for the
data it would like to receive from the user, and its Ul view
as a JavaScript class. When a user calls a client tool by its
name, mage can create a new instance of the client tool’s base
JavaScript class and pass in all the parameters from the user.
Note that by asking tool creators to specify the exact number
and types that their GUI tool will accept for parameters, mage
is able to screen a request from the user and show users tool-
specific error message if they’ve tried to call the client tool
with data it cannot accept.

table: The tool creator registers “table” as their tool’s
name, and the parameter requirement that the user pass a
variable type that can be displayed in a table, such as a pandas
dataframe’. The tool creator also specified its base JavaScript
class is DataGrid —though, what exactly will DataGrid
do when it receives a Python binary object like a pandas
dataframe? As an optional setting for situations like these,
mage will accept a Python function, preproccess, which it
runs on requested user data before passing the data to the client
tool. The creator of table authors their preprocess function
such that incoming data is converted into JSON objects that
their system can read and display.

5 Jupyter Notebook to date is the most popular open-source notebook
platform, and offers extensive extension APIs https://jupyter.org
SMany of our example tools were created from a basic Create React
App setup https://create-react-app.dev

pandas is a common data manipulation library for Python optimized
for performance with data tables https://pandas.pydata.org

https://alpha.trycarbide.com
https://alpha.trycarbide.com
https://www.sas.com/en_us/home.html
https://www.jmp.com/en_us/home.html
https://www.jmp.com/en_us/home.html
https://jupyter.org
https://create-react-app.dev
https://pandas.pydata.org

mage: Now that mage has the configuration it needs, a user
can call the table tool by running “%summon table df”,
where df is the user’s own data variable. The figure below
illustrates how the client tool appears for the user:

user runs code %summon table df

\

mage creates a new table widget with df

¢ age ¥ workclass v fnlwgt ¥
user sees output
? 77053
1 82 Private 132870
2 66 ? 186061

To keep with existing notebook conventions, a client tool in
mage is instantiated from code and displayed below in that
code cell’s output. mage leverages the ipywidgets library to
render each tool’s HTML div within a cell’s output.

Users call mage via a custom magics command syntax
%summon <tool name> <parameters>. Magics are a key-
word used in iPython that start with %, and are conventionally
used for meta-programming. We chose magics to highlight to
a user that the output produced by this code behaves differently
from normal notebook output, but a different implementation
of this work could easily pick a non-magic syntax.

Choosing Which Actions Should Affect State

Now that a client tool can be called, displayed, and run in the
notebook, a tool creator could choose to stop here. However,
at this stage, even if the creator of table builds all manner of
table manipulation functionality into their UlI, their UI alone
won’t be able to affect the user’s data df in any way. Crucially,
Jupyter notebooks use sandboxing by design such that code
that is not run by the user within their code cells cannot af-
fect the user’s program environment, and instead affects only
a copy of the user’s runtime. A user’s variables cannot be
directly modified without code run by the user.

Due to sandboxing, mage acts as the intermediary between a
client tool and notebook state. For a client tool’s data prepro-
cessing steps mage simply runs these within a sandbox, since
a client tool should not be changing the user’s variables at this
stage. Similarly, if a tool needs to request an updated value of
a user’s variable at runtime, mage provides a getVariable
call that will read and return (but not modify) user variable
values. For actions where the tool creator does want to modify
state, we describe mage’s approach next.

Templating Actions from GUI to Code

table: The creator of table decides that when a user filters
a column in the table, as illustrated in Figure 2.1, they would
like that filter applied to the user’s data variable. To implement
this behavior, when the user starts a filter in the UI, the table
creator calls the mage API call handoff().

mage: To avoid notebook sandboxing, it’s best to run code
from the user’s own code cells. Thus, mage generates code

needed to affect state and then injects it directly into the same
cell where the client tool was originally instantiated. However,
mage does not inherently “know” what it means to filter a
column of data, nor does it “know” the meaning of any other
user action. mage needs instructions on how to translate an
action into code. To provide the flexibility and expressivity
necessary to support a broad range of tools, we chose to use
code templates. For each action that should affect state, a tool
author provides templates to reflect that action in code.

table: The tool creator writes a template such that when a
user filters a column (Figure 2.1), table has a fill-in-the-blank
template corresponding to filtering a column using Python
and pandas. The format of a template is illustrated in Fig-
ure 2.2, where names that start with “$” are blanks in the
template and all other characters are literal pandas/Python
syntax. When the action occurs, table calls the mage API
handoff(<template>, <data>), with the template as well
as data it “knows” about the user’s action. For instance, table
“knows” based on its UI that the user is filtering column “age”
with the value “age < 657, so both of these values are passed
along with the template as data to help fill in its blanks.

mage: Upon receiving a handoff() API call, mage now
resolves the template based on data the client tool provided
as well as notebook state. For instance, the blank $COL in
Figure 2.2 is filled in with “age”, and the blank $EXPR is
filled in with “< 65”. Since a client tool is not responsible
for knowing anything about the naming of variables in the
user’s environment, mage looks up the name of the user’s data
variable currently displayed in table and fills in the blank
$DF with df. With all blanks in the template resolved, the
code is complete Python syntax ready to run. An extra benefit
of templates is that a client tool can send mage multiple tem-
plates for the same action, corresponding to the same action
in different languages or library environments. In this way, a
tool creator can support a broad range of programming envi-
ronment with relatively little extra effort. If multiple template
options are present, mage chooses the one that fits the current
programming environment based on type checks.

Finally, mage inserts the new code into the code cell (Fig-
ure 2.3) and requests the notebook to re-execute the cell (Fig-
ure 2.4). Re-executing the cell has several effects:

1. Running the filter code ensures the user’s variable df is
now filtered and will remain filtered for all other subsequent
code anywhere in the notebook that uses df. This filter
is semi-permanent in that whenever the user starts a new
session with their notebook or re-runs their notebook, the
filter will execute on df each time. To remove the filter, the
user may delete that code using the normal notebook undo.®

2. Running the cell refreshes the view of the tool table and

delivers the updated (filtered) data for df to table through
its %summon call parameter. The user sees a filtered table.

8Note that we did not implement mage undo support for this pro-
totype of the API, but it should readily follow by translating back
code to action. By having mage watch the notebook undo stack it can
notifying a client tool if their most recent template has been undone.

1 user selects filter age 'k workclass ¥ fnlwgt ¥
by age < 65

0 90 ? 77053
1 82 Private 132870
2 66 ? 186061

2 table selectsits ¢ onepoprrngcoL" J$SEXPR]
filter template

tab:ll.e mqus the $DF=$DF[$DF["age"] < 65]
user’s choice

Mmage resolves g _ gf[df["age"] < 65]
the template as:
mage adds the newly created code to the
original notebook cell and runs it to update state

df = df[df["age"] < 65]

user sees effect %summon table df

4E > I o> D

age ¥ workclass ¥ fnlwgt ¥

14 62 Private 185261
20 50 k Private 207480
21 64 Public 184076

Figure 2: Process for reflecting actions in code in mage

For each subsequent action, the tool’s templates for that action
will be turned to new code by the same process.

Reading Back Actions from Code to GUI

The goal of mage is to support any GUI tool in a notebook to
work fluidly with code. However, many tools will not have a
complete mapping between GUI action and code. To illustrate
this challenge, we now switch our attention from table to
a new client tool, an image editor shown in Figure 3. Like
most GUIs, the image editor has a finite set of features: it
supports common image processing tasks, but not every image
processing task. Below, is the code that would be generated
by mage if a user cropped their image with the image tool:

1 crop_img = dogs[11[0:750, 0:750]
2 %summon image crop_img

Now suppose the user makes some edits to the code directly:

1 crop_img = dogs[1][0:750, 100:850]
2 foo(crop_img)
3 %summon image crop_img

In line 1, the user has changed the dimensions of the image
crop. mage watches code cells where a GUI tool is active
and reacts to user code edits by attempting to update any state
change back to the GUI tool. Instead of writing actions, here
we use a client tool’s code template to read actions: mage

%summon image dogs[1]

X
Canvas tf

size: 1000px 750px
resolution: 72ppi
padding: Opx

0 o ‘Lﬁ ‘ =
Color

Blur

Plot

0 500 1000

Figure 3: “image” is a basic image editor using mage. Unlike
writing plain code for image processing steps, the user can
instantly see the effect of their operation on the image.

takes templates from image and fills in template blanks to
create a regex that will “recognize” any code matching that
template. Here, the change to cropping is easily matched back
to the crop action template. Finally, mage reports the updated
crop action back to the tool image.

Note that regular expressions are less powerful than other
ways of recognizing code, such as using an abstract syntax
tree (AST) analysis. We choose to use regular expressions (in
conjunction with type requirements provided by a template) as
a conservative approach to limit recognizing false positives and
to limit complications brought in by variables. For instance,
a user in line 1 could write “n” instead of 850, where the
value of n is 850. A regex will reject “n” for not being a valid
number, while a more thorough static analysis could easily
recognize ‘“n” as a variable representing a number. However,
recognizing n comes at the cost of mage needing to watch the
value of n over time in case it changes from 850 in the future.
Why? If image is not notified as soon as the crop value is
no longer 850, users may continue to use the image editor
while seeing an invalid crop. We defer these more complex
state handling cases to future work, and for now avoid many
of them with conservative approaches.

The new code the user has added to line 2 represents a different
scenario. The function foo is not within the image GUI tool’s
limited action template list and mage has no inkling about
how foo affects the image crop_img. Here mage responds by
running the code, such that image displays the correct value
of crop_img, but with no “understanding” of any sequence
of actions that precedes foo. Since we cannot know if foo
depends on the order of operations of the crop in line 1, mage
takes a conservative approach and assumes all code preceding
an unrecognized line of code is untouchable user code. Thus
image will have no undo operations possible for the image
prior to foo, and all new actions will have auto-generated code
inserted after foo.

GUI Widgets with mage vs. GUI Notebook Extensions
Due to the complexities of moving state between GUI/code
representations, currently mage requires significant overhead

from tool creators, in the form of code templates and type
information. A creator might worry if flexible GUI/code in-
teractions is too high a burden to implement for their tool. To
address this limitation, we look more broadly at tool creators’
current workflows to find other avenues to lower overhead.

Today, aside from the simplest ipyWidgets which can be cre-
ated by users on-the-fly, GUI widget tool creators for note-
books face much the same hurtles that tool creators face when
extending any code editor. That is, creating a new widget
is tightly tied to a specific editor’s extension APIs. For in-
stance, Jupyter Notebooks (used here for mage) has a different
extension API from it’s sibling notebook platform, Jupyter
Lab. Given the still evolving nature of the notebook paradigm,
today there are many notebook platforms to choose from, each
with their own flavor of notebook programming and their own
extension APIs. If we are to consider a GUI tools to be the
same first-class means of work as code within a notebook,
platform-dependency presents a major problem. A user can
expect the same Python code to work the same across any
notebook platform, but this will not hold true for GUI widgets.

Our aim in mage is to make a tool creator’s GUI widget as
generalizable as possible to different platform and language
environments. Thus, a tool creator with mage does not take on
platform-specific overhead, and provides only its own state-
related logic: 1) an HTML-based GUI for their widget and
2) code templates to translate their GUI’s interactions to user
code. The mage API handles all notebook extension logic
under-the-hood, which led to our implementation decision to
build mage API on top of ipyWidgets API and the base note-
book iPython runtime itself. The ipyWidgets API provides
mage with some portability across the different notebook plat-
forms that support ipyWidgets. Similarly, the base iPython
runtime remains at the core of multiple different notebook plat-
forms. Thus although mage API requires some modification to
work in different notebook platforms, our core implementation
is meant to be robust to different environments. Shielding in-
dividual GUI widgets from platform dependencies also comes
with the benefit that changes to the underlying notebook ex-
tension APIs will only require update of the mage API and not
individual implementation updates from tool creators.

DEMONSTRATING DESIGN SPACE IN TOOLS

At this point, we depart from discussing the mage API itself,
to explore the design space of support tool interactions that a
blended GUI/code environment powered by mage enables.

Thus far we have introduced two tools, table and image
that leverage the mage API. Here, we describe all six tools,
including the first two, that we implemented to explore dif-
ferent kinds of use cases for mage. To choose interesting use
cases, our team first brainstormed common data or machine
learning tasks. Next, we iteratively sketched possible wid-
gets for each task, and then narrowed down into the final set
of six tools that represent the most diverse set of interaction
ideas to push our understanding of the design space. From a
research perspective, actively developing client tools pushes
on our understanding of GUI/code interactions by allowing
us to actively play with them, and also pushes on the kinds of
scenarios our mage API should deal with and support.

spec = { "mark": {"type": "bar"},
"encoding":

"x": {"field": "education", "type": "nominal"
"y": {"aggregate": "count", "type": "quantitar
"color": {"field": "income", "type": "nominal'

%summon plot census_1 spec

Plot o

1.0
Mark bar Y
Encoding Clear ’
X A education R ()] !
0.2
Y COUNT() &
0.0

:::::::

<O
o o
By ®

Count of Records
)
I

<O

education

Color A income

£ £

<
o
10th -
11t
12t
st-4tt
-6t

t

it

Assoc-voc
Bachelors
Doctorate

Assoc-acdm

Size = <

Figure 4: “plot” is a chart builder tool powered by Vega-Lite.
Instead of specifying upfront what kind of chart they would
like, a user inputs just their data into plot and can then try out
a variety of different chart types and encodings in the GUI.

plot: visualizing data as charts

plot, shown in Figure 4, is a chart builder that aims to help
data workers iterate on common chart designs without the need
to recall an idiosyncratic chart syntax. plot uses a domain
specific language (DSL), Vega-Lite [24], to represent state and
to template its code. Akin to Voyager [28] and Tableau [26],
users can use plot’s GUI to explore different visual encodings
of their data. Using mage’s API for live code generation,
plot generates a Vega-Lite [24] specification based on user
interaction. Although our current implementation of plot
shows and reads Vega-Lite JSON specifications, future work
can easily support bindings to Altair [27], the wrapper of
Vega-Lite in Python.

As plot aims to help users build common charts, it is inten-
tionally less expressive than Vega-Lite, which supports a broad
variety of charts, and thus supports only a small subset of Vega-
Lite features. One challenge with this expressivity mismatch
is that the code and GUI state can be in conflict. Similar to
prior code/GUI tool like Adobe Dreamweaver’, plot avoids
such conflicts by ensuring that every Vega-Lite attribute either
has a widget for all of its possible values or have no interface
for the attribute at all. Basically, every widget in the GUI must
be able to display any change to its corresponding attribute in
the code. For other Vega-Lite attributes without corresponding
widgets, there are implicitly no conflicts as the attributes are
not shown in the GUL

table: transforming and cleaning data

table, as we have previously discussed and shown in Fig-
ure 1, is a data sheet tool for transforming data through direct
manipulation, much like common spreadsheet tools but with-
out spreadsheet formulas. The goal of table is to make data

9 Adobe Dreamweaver blends code editing with GUI editing for web-
site design https://www.adobe.com/products/dreamweaver.html

https://www.adobe.com/products/dreamweaver.html

%summon datasplit mydata

Training Dev) Test
90% 5% | 5%
@ shuffle & stratify & fold & compare AL

Figure 5: “datasplit” is a tool for a standard operation of split-
ting data into subsets for training and testing a ML model.
datasplit gives the user operations to explore choices
around creating data subsets. The color-segmented bar vi-
sually offers the users a suggested default split, as well as
tunable divides that allow them to explore different splits.

transformation and cleaning easier for data workers to do and
to visually verify that their data looks correct during this work.
So called “data wrangling” can be the most tedious and time-
consuming part of a data worker’s workflow [15].

image: editing image data

image, as introduced earlier in Figure 3, is a basic image
editor that uses mage to generate code for processing image.
Since media data like images, sound, or video already have
custom display widgets in a notebook today, here we explore
the reasonable next steps of using mage to provide media
editors standard to different kinds of media data. Although a
data worker can certainly write code to process image data,
the goal of image is to give data workers a faster feedback
loop to “see” the effects of their operations.

datasplit: segmenting data for machine learning

With the datasplit tool, we explore the possibility of us-
ing mage to give a visual face to common data work API
calls that contain lots of options. We designed datasplit
as a visual version of the common scikit-learn'? function
train_test_split(). This means that datasplit uses
mage to write a call to train_test_split(), while pro-
viding a GUI to give the user the ability to play and ex-
plore with all the parameter options for the API call. While
train_test_split() is one specific API call, the task it
represents is a universal one for supervised machine learning:
given a dataset, split the dataset into separate smaller datasets
that can be used to train and test the model. We note that many
library calls, especially in machine learning or data processing,
are highly tunable with a large set of optional parameters. For
a data worker, especially a novice one, the meaning and appro-
priate use of all these options can be hard to grasp [4]. Thus,
the goal of datasplit is to explore the idea of giving data
workers more play-based interactions to understand options.

confusion: exploring classifier model performance

confusion is a tool, shown in Figure 6, with the goal of
helping data workers understand machine learning model per-
formance in their notebook. A confusion matrix is a common
visualization for the performance of a classifier. The matrix

10gcikit-learn is a common novice-friendly machine learning library
in Python https://scikit-learn.org/stable/

%summon confusion actualY pedictedY

- 1000

Incorrect Correct 5 samples Q)

X Explore

Predicted: 2, Actual: 7 Predicted: 2, Actual: 7 Predicted: 2, Actual: 7 Predicted: 2, Actual: 7

Figure 6: “confusion” is a tool to explore the correct and
incorrect results of a classifier model, using a classic confusion
matrix visualization. Unlike a plain confusion matrix, the
user can interactively explore each result in the matrix, which
appears in a row of samples beneath the matrix.

shows each possible label on the x and y axis: a perfect perfor-
mance is one were all predicted labels fall in the left-to-right
diagonal. Existing libraries like scikit-learn output a static
table of numbers. By contrast, in a mage powered tool, the
matrix becomes an interactive exploration interface where
the user can click on individual matrix cells to see below
examples of data that were (mis)classified in that way. As
compared to tools we’ve discussed so far, an interesting prop-
erty of confusion as an exploratory visualization is that its
primary use of mage is not actually to generate code. Instead,
confusion uses the mage API to retrieve and process data
from the user’s environment to automatically generate differ-
ent ways for the user to look at their classifier results in the UI,
without asking the user to provide any additional code.

plt.show()
%ssummon save figl

dpi 300 progressive face color

edge color format png transparent @

padding (inches)

System’s Save File Dialog

bounding box (inches)

plt.show()
plt.savefig('./plot.png', dpi=300, format='png', transparent=True)

Figure 7: “save” is a tool, similar to a standard save file di-
alogue box, that lets a user interactively choose between the
options for saving a chart or figure.

https://scikit-learn.org/stable/

save: exporting (anything) to a file

Similar to datasplit, the save tool puts a visual GUI face
to library calls for exporting data to a file. Shown in Fig-
ure 7, when the user runs save on a matplotlib plot, save
presents a dialogue box containing the various options for
exporting the plot to file. Once the user clicks the “save” but-
ton, they can then use a standard system file browser to save
the file to their desired location, while plot generates appro-
priate saving code using mage. The key difference in idea
for save compared to datasplit, is that we imagine save
could be used as a single visual GUI utility for many different
kinds of API calls that perform an export/save. Using mage
to type-check the type of variable that a user inputs into the
%summon save <data> call, save could contain bindings
for different kinds of libraries, and adapt the dialogue box vi-
sualized accordingly. So, if the user inputs a pandas dataframe
instead of a matplotlib plot, save will offer the save options
offered by the pandas library accordingly.

10
Plot &
Mark | bar B 08
o
4
Encoding Clear g 06
<
X A education S @ B
‘504
Y COUNT() ¢ @ 8
Color A income < @ 02
size - 8 . .
g £ 5§ &8 £ 8 £ § % ¢ 3
= F £ g ¢z = § % @ £
£ 3 8 &£ § o £ 8
j 8848 *° £
< 3
education
Show in table @ Show subplot

In [21]: subset = census_l[census_1["education"].isin(["Prof-sc
subset = subset[subset["income"].isin([">50K"])]
%summon table subset

age v workclass ¥ fnlwgt ~ education ¥ education

53 38 Private 65324 Prof-school
61 33 Private 170769 Doctorate
153 a7 Private 114459 Doctorate

Figure 8: In (1) the user has the plot tool open and has
constructed a chart. They select two columns from the chart
of interest and begin dragging these columns outside of the
chart. As soon as the user starts dragging, an option bin menu
appears. The user drags and drops the columns to “Show in
table”, and in (2) a new cell is inserted immediately below that
displays their selection both in code and in the table tool.

MULTI-TOOL USAGE SCENARIO

Now that we have demonstrated six example client tools for
mage, an important design consideration is how a user might
use their notebook with multiple flexible GUI/code tools work-
ing in concert. Although we largely leave the multi-tool de-
sign space for future work, we did design and implement one
specific kind of interaction to illustrate the benefits fluid transi-
tions between GUl/code tooling might offer users. We focused
on one very fundamental data worker need: selecting data.

Widget Name | Common DS/ML Task
A spreadsheet widget that reflects direct manip-
table : o
ulation actions in generated code.
lot A chart that generates selection code when a user
P selects data through direct manipulation.
. A basic image editor that generates code for
image . :
common image data processing tasks.
confusion An interactive tool for exploring classifier model
performance.
ai A basic form interface for building correct calls
p to a web API to retrieve data.
datasplit An interactive tool for splitting data into sets
P needed to train and test a model.
An interactive tool for saving a plot or figure
save 5 .
with export settings.

Table 1: Initial paper prototypes shown to practitioners.

Imagine an analyst is exploring the 1994 US Census dataset
from the UCI Machine Learning Repository [7] and wants
to investigate historical gender bias in high income and high
education workers. First, they call %$summon plot census
to visualize the distribution of education as a bar chart in the
plot tool (Figure 8.1). The analyst then adds “income” to
the color channel and enables “normalize” stacking for the
“Y” axis to compare the percentage of low vs. high income in
each education level (Figure 8.1). The analyst sees that higher
education is correlated with higher income. Now, interested
in the high education and high income group, they select
the “>50k” income bars with “Doctorate” and “Prof school”
education levels, and begin dragging this selection. As they
drag the data selection out of the plot, mage provides a “drag
bin” interaction where options specific to the plot client tool
appear. The user sees two options for their selection: “Show
in table” or “Show in subplot” (Figure 8.1). They drag their
selection in to “Show in table”, resulting in a new instance
of the table tool appearing in a new cell below, with that
data slice already loaded (Figure 8.2). In this new table view,
the analyst finds that all five rows are “Male”, leading to a
hypothesis that there is a gender bias.

The interaction of dragging data selections between tools is the
only multi-tool interaction currently built into the mage APL. It
can be used to drag a column from the table tool to visualize
distributions with the plot tool or drag a matrix cell from the
confusion tool to see the full table view of that particular
data slice. Instead of GUI to GUI transitions, the user can also
use drag to export a selection from a visualization like plot
into a plain code selection for that data slice. Our goal is to
make it simpler and more flexible for data workers to move
the same data or data slices between different modalities.

PRACTITIONERS REFLECTING ON THE DESIGN SPACE

To better grasp practitioners’ goals, interests, and values in this
new design space of flexible GUI/code tooling, we recruited
nine participants from a large technology company who both
use notebooks and do professional data work. Most partici-
pants also worked with machine learning as part of their job.
Each session began with a brief pitch for a new system for
GUlI/code work in notebooks that our team was in early stages
of developing. We then asked participants to help our team

understand which tool and interaction ideas would be helpful
(or not) for their own daily work.

To ground the discussion and help illustrate what we were
talking about, we presented participants with seven starter
tool ideas (listed in Table 1). Note that the api tool has the
same basic idea as the datasplit tool in that they are both
GUI tools to configure an API call, thus we did not actually
implement the api tool.

Each tool was shown as a high-fidelity paper prototype, except
for table and plot. These two were given as an initial ex-
ample, chosen for their familiarity, and shown together within
a live notebook. Participants were given the opportunity to
try out the live table and plot tools with a simple data task
to get a sense for the experience and feel of using a flexible
GUI/code tool in the notebook. Each subsequent tool was then
shown one at a time on paper to focus discussion.

While it may come as a surprise that we chose to present
most tools on paper when it was fully possible to keep this
design session in a live notebook with functioning tools, we
made this choice to better enable conceptual feedback par-
ticipants. Conventional user-centered design wisdom as well
as prior design research [5] has found that when users are
presented with high fidelity functioning prototypes, their feed-
back typically fixates on details of visuals and functionality of
that particular implementation. In order to prevent distracting
details from dominating the conversation and focus the user
instead on considering the broader concept or ideas behind
the tool, it is helpful to present less detail and lower fidelity
for a tool to users [5]. Thus, we kept much of the discussion
to single-screenshot paper prototypes of tools on paper.

When viewing each paper prototype, we asked participants
to evaluate its “usefulness” as well as general impressions as
if they were the one who would be using the tool. During
this process, we encouraged participants to generate their own
variants or entirely new tool ideas based on tasks they faced
in their own daily work. We also encouraged participants to
freely sketch or annotate directly on the paper prototypes.

Study Limitations

Note that by pushing participants to discuss more abstractly
about concepts, rather than implementation details of mage
or details of any of our demonstration tools, this study does
not serve as a usability evaluation of mage. At this stage
in research, we considered it higher-priority to expand our
understanding of the core needs mage and flexible GUI/code
tooling should support. An important next step of our future
work is the evaluate the usability and efficacy of mage for
serving these needs expressed by practitioners, which we detail
next.

Results

Following the study, we conducted a thematic analysis of
participants’ tool ideas and feedback, which interactions they
valued or rejected and why. We next discuss these themes and
illustrate how these themes play out with respect to our six
implemented example mage client tools.

Automatically Generating Code

Our nine participants held a mix of experience, as is com-
mon with data workers. Some practitioners had expertise
in statistics or ML but were relatively new to programming,
while some practitioners were expert programmers with less
data/ML experience. More senior practitioners had expertise
in both. A key theme we found was how expertise impacted
how practitioners reacted to the idea of a flexible GUl/code
tool automatically generating code for them.

Participants who were less confident with programming par-
ticularly appreciated the ability of mage tools to generate code
for them while allowing them to use more familiar modalities
like the data sheet table. Some more novice programmers
even expressed a preference that generated code be hidden
by default, so that they did not even have to look at it. Some
notebook environments like Google’s Colab!! do offer code
hiding features, where a code cell can be hidden by default but
then shown if expanded. Meanwhile, programming experts
tended to reject some tool ideas that they felt they could do
much faster by writing code.

An example of participants’ divide on code generation is the
save tool for exporting chart figures to file (Figure 7). Some
participants greatly appreciated this functionality as a way
to prevent them from having to memorize finicky syntax or
make silly mistakes saving their chart incorrectly. However,
programming experts said they were unlikely to use a tool
such as this when they already know the correct syntax.

Visual Data Selection

All participants wanted easier ways to select data and use
direct manipulation to pull a selection into code. This kind
of interaction is demonstrated above under “Multi-tool Use
Case” (Figure 8). Practitioners value data selection through
direct manipulation for multiple purposes, such as being able
to interactively label data or interactively choose what data to
explore more closely.

Interact to Explore Model Performance

Since most participants dealt with developing machine learn-
ing (ML) models as part of their work, participants were par-
ticularly enthusiastic about having interactive tools to work
with to help them understand model performance. Even with
the availability of tests and metrics, understanding model per-
formance is a challenging exploratory task for practitioners,
especially for ML novices [19, 29, 3]. Interactive tools can
help users better understand model performance [18, 23], and
a benefit of mage is that client tools can take in a user’s model
data and context, directly within their active code environment,
and provide in-the-moment interactive support in situ with-
out switching to an outside GUI tool. An example of this is
demonstrated in Figure 6, with the confusion tool. While
the confusion tool was rated highest among all nine partic-
ipants, usually confusion prompted a discussion for how
participants hoped for such interactive tools to be available for
much more complex model analysis tasks. One simple tool
idea suggested by a participant was to have an interactive way

11Google Colaboratory is a web-based notebook environment that
allows live multi-user editing https://colab.research.google.com

https://colab.research.google.com

to explore trade-offs in performance of their model by letting
them interactively tune their preferred threshold for precision
versus recall.

Make Good Practices Easier

Participants were particularly excited about the ability in
datasplit to compare distributions, as this is a best-practice
that is rarely provided by default. Although of course all func-
tionality in dataplit is possible in raw code, a GUI makes
suggested operations readily apparent to novice users, who
may not yet have the ML know-how to follow best-practices
without scaffolding. Data and ML programming APIs ide-
ally encapsulate best-practices as the default capabilities they
provide to users [2]. Interactive GUI tools also have more op-
portunity to nudge users towards best-practices when placed
directly into the user’s work environment.

FUTURE WORK
Next, we cover areas of future work towards making mage
more powerful and flexible for data workers and tool creators:

Future Work: Generated Code Quality

During exploratory programming, data workers try out many
possibilities that don’t always contributing to the final re-
sult [16]. Simply generating new code for each new user
action can unfortunately result in an excess of redundant and
obsolete code. A simple example is shown below:

df.insert (14, "educ", dat)
column_names = list(df)
column_names.pop(14)
column_names.insert(2, "educ")

df = df.reindex(columns=column_names)
%summon table df

OOk WWN P

Here the user inserts a new column at one position, then repo-
sitions it. This sequence should be simplified to just:

1 df.insert(2, "educ", dat)
2 %summon table df

For a single tool, code quality is straightforward to optimize.
For the table tool, we implemented table’s own internal
state dictionary object, which is updated by each action in the
table. Instead of adding a new line of code for each action,
mage gives the option of fully rewriting the writable area of
all auto-generated code (unrecognized user code is considered
not writable) in the user’s code cell. So for table, after each
user action table uses its own state dictionary to output a list
of templates corresponding just to the final current state of the
table. This results in compact code as above.

Our challenge lies in generalizing this kind of optimization to
any tool, rather than leaving it to a tool author to implement.
We found that to create a compact internal representation of
state, as in table, relies on both having some knowledge
of how to operationalize state into a dictionary and order of
operations, both of which are specific to the tool domain.
Improving this process in an area for future work.

Future Work: Movement Between GUI Tools

Although we prototyped some ways that a user can move data
between two GUI tools (see the section on Multi-tool Use
Case above), many questions remain open about how a user
might transfer content between two GUI tools, and not just
between GUI and code. A simple use case for this may be to
create a set of coordinated visualizations, like an impromptu
data dashboard, that all update based on data selection from
a table. Or, similarly, a data worker may want several GUI
tools designed for providing model metrics to display metrics
specific to different data slices within the model or different
tradeoffs between precision and recall. The chief technical
challenge in coordinating multiple GUI tools in such a way
is designing an easy-to-use protocol by which a tool creator
can specify what kinds of other tools and other data signals
their tool can work with. This adds extra complexity for
tool builders, which would need careful design to ensure the
process was as lightweight for creators as possible.

More generally an overall challenge for mage, or any future
toolkit like it, is to make the process for individual tool builders
easier. Despite providing tool builders a bulk of analysis and
code generation to enable fluid GUI/code work, our work
demonstrates a number of complications where tool-specific
understanding is currently needed from tool builders.

CONCLUSION

In this work, we have discussed mage, an API for allowing
smooth transitions between GUI and code work in notebooks,
as well as new kinds of tool avenues this GUI/code back-and-
forth enables, demonstrated through six example tools. Our
hope is that this work can enable and inspire new support tools
to give data workers flexible interactive help at the moment
as they need it. However, the core idea of flexible transitions
between tools is much bigger than our work here, or compu-
tational notebooks. Seamless transitions between different
devices in a user’s environment or seamless transition between
code and visuals in 3D graphics programs are both common
examples of this broader technique. For data work, blending
modalities of different kinds of tools practitioners use offers a
new interaction space for richer interactions and more context-
aware support tailored to a practitioners’ specific workflow.
We hope to see more HCI systems work in these intersections
to support data workers in coming years.

ACKNOWLEDGEMENTS

We thank all of our study participants, and everyone who
provided feedback on this work, including: Prof. Brad A.
Myers at Carnegie Mellon University, all of our reviewers, and
our colleagues at Apple Inc.

REFERENCES
[1] Alex Bigelow, Steven Drucker, Danyel Fisher, and
Miriah Meyer. 2016. Iterating between tools to create
and edit visualizations. IEEE Transactions on
Visualization and Computer Graphics (2016). DOI:
http://dx.doi.org/10.1109/TVCG.2016.2598609

[2] Joshua Bloch. 2006. How to design a good API and why
it matters. In Companion to the 21st ACM SIGPLAN

http://dx.doi.org/10.1109/TVCG.2016.2598609

3

—_

[4

—

(5]

(6]

(7]

(8]

[9

—

(10]

[11

—

[12]

[13]

symposium on Object-oriented programming systems,
languages, and applications.

Angel Cabrera, Will Epperson, Fred Hohman, Minsuk
Kahng, Jamie Morgenstern, and Duen Horng Chau.
2019. FairVis: Visual Analytics for Discovering
Intersectional Bias in Machine Learning. [EEE
Conference on Visual Analytics Science and Technology
(VAST) (2019). DOI:
http://dx.doi.org/10.1109/VAST47406.2019.8986948

Carrie J Cai and Philip J Guo. 2019. Software
Developers Learning Machine Learning: Motivations,
Hurdles, and Desires. In 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE.

Scott Davidoff, Min Kyung Lee, Anind K Dey, and John
Zimmerman. 2007. Rapidly exploring application design
through speed dating. In International Conference on
Ubiquitous Computing. Springer.

Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine,
and Sumit Gulwani. Wrex: A Unified
Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. (??7?).

Dheeru Dua and Casey Graff. 2017. UCI Machine
Learning Repository. (2017).

http://archive.ics.uci.edu/ml

Gregory Piatetsky for KDnuggets. 2018. Python eats
away at R: Top Software for Analytics, Data Science,
Machine Learning in 2018: Trends and Analysis. (2018).
https://www.kdnuggets.com/2018/05/

[14] Kaggle. 2018. 2018 Kaggle ML & DS Survey. Dataset.
(2018). Available from Kaggle
https://www.kaggle.com/kaggle/kaggle-survey-2018.

[15

—_

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive visual
specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. DOI :
http://dx.doi.org/10.1145/1978942.1979444

Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3025453.3025626

[16

—_

[17

—

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damidn Avila, Safia
Abdalla, and Carol Willing. 2016. Jupyter Notebooks — a
publishing format for reproducible computational
workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, F. Loizides
and B. Schmidt (Eds.). IOS Press.

Kayur Patel, Naomi Bancroft, Steven M Drucker, James
Fogarty, Andrew J Ko, and James Landay. 2010. Gestalt:
integrated support for implementation and analysis in
machine learning. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology. ACM. DOI:

[18

[r}

poll-tools-analytics-data-science-machine-learning-results. http://dx.doi.org/10.1145/1866029.1866038

html.

Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. ACM Sigplan
Notices (2011).

Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R Klemmer. 2008. Design as
exploration: creating interface alternatives through
parallel authoring and runtime tuning. In Proceedings of
the 21st annual ACM symposium on User interface
software and technology. ACM. DOI :
http://dx.doi.org/10.1145/1449715.1449732

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019.
Sketch-n-Sketch: Output-Directed Programming for
SVG. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology.
DOI:http://dx.doi.org/10.1145/3332165.3347925

Edwin L Hutchins, James D Hollan, and Donald A
Norman. 1985. Direct manipulation interfaces.
Human-computer interaction (1985). DO :
http://dx.doi.org/10.1207/s15327051hci®104_2

Kaggle. 2017. Kaggle Machine Learning & Data
Science Survey 2017. Dataset. (2017). Available from
Kaggle
https://www.kaggle.com/kaggle/kaggle-survey-2017.

[19

—

Kayur Patel, James Fogarty, James A Landay, and
Beverly Harrison. 2008. Investigating statistical machine
learning as a tool for software development. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. DOI1:
http://dx.doi.org/10.1145/1357054.1357160

[20

—_

Roger D Peng. 2011. Reproducible research in
computational science. Science (2011).

[21] Jeftrey M Perkel. 2018. Why Jupyter is data scientists’
computational notebook of choice. Nature (2018). DOI:
http://dx.doi.org/10.1038/d41586-018-07196-1

[22] Stephen G Powell, Kenneth R Baker, and Barry Lawson.
2008. A critical review of the literature on spreadsheet
errors. Decision Support Systems (2008).

[23] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina
Suh, and Jason D Williams. 2016. Squares: Supporting
interactive performance analysis for multiclass
classifiers. IEEE transactions on visualization and
computer graphics (2016). DOI:
http://dx.doi.org/10.1109/TVCG.2016.2598828

[24

[}

Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2016. Vega-lite: A
grammar of interactive graphics. IEEE transactions on
visualization and computer graphics (2016). DOI:
http://dx.doi.org/10.1109/TVCG.2016.2599030

http://dx.doi.org/10.1109/VAST47406.2019.8986948
http://archive.ics.uci.edu/ml
https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html
https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html
https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html
http://dx.doi.org/10.1145/1449715.1449732
http://dx.doi.org/10.1145/3332165.3347925
http://dx.doi.org/10.1207/s15327051hci0104_2
https://www.kaggle.com/kaggle/kaggle-survey-2017
https://www.kaggle.com/kaggle/kaggle-survey-2018
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/3025453.3025626
http://dx.doi.org/10.1145/1866029.1866038
http://dx.doi.org/10.1145/1357054.1357160
http://dx.doi.org/10.1038/d41586-018-07196-1
http://dx.doi.org/10.1109/TVCG.2016.2598828
http://dx.doi.org/10.1109/TVCG.2016.2599030

[25]

(26]

(27]

Helen Shen. 2014. Interactive notebooks: Sharing the
code. Nature News (2014).

Chris Stolte, Diane Tang, and Pat Hanrahan. 2002.
Polaris: A system for query, analysis, and visualization
of multidimensional relational databases. I[EEE
Transactions on Visualization and Computer Graphics
(2002). DOI:
http://dx.doi.org/10.1145/1400214.1400234

Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik
Moritz, Kanit Wongsuphasawat, Arvind Satyanarayan,

Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott Sievert.

2018. Altair: Interactive Statistical Visualizations for
Python. Journal of Open Source Software (2018). DOI:
http://dx.doi.org/10.21105/joss.01057

[28] Kanit Wongsuphasawat, Dominik Moritz, Anushka

Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2015. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. /[EEE
transactions on visualization and computer graphics
(2015). DOI:
http://dx.doi.org/10.1109/TVCG.2015.2467191

[29] Qian Yang, Jina Suh, Nan-Chen Chen, and Gonzalo

Ramos. 2018. Grounding interactive machine learning
tool design in how non-experts actually build models. In
Proceedings of the 2018 Designing Interactive Systems
Conference. DOI:
http://dx.doi.org/10.1145/3196709.3196729

http://dx.doi.org/10.1145/1400214.1400234
http://dx.doi.org/10.21105/joss.01057
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1145/3196709.3196729

	Introduction
	Prior Work & Design Constraints
	mage System Overview
	Getting Started
	Choosing Which Actions Should Affect State
	Templating Actions from GUI to Code
	Reading Back Actions from Code to GUI
	GUI Widgets with mage vs. GUI Notebook Extensions

	Demonstrating Design Space in Tools
	plot: visualizing data as charts
	table: transforming and cleaning data
	image: editing image data
	datasplit: segmenting data for machine learning
	confusion: exploring classifier model performance
	save: exporting (anything) to a file

	Multi-tool Usage Scenario
	Practitioners Reflecting on the Design Space
	Study Limitations
	Results
	Automatically Generating Code
	Visual Data Selection
	Interact to Explore Model Performance
	Make Good Practices Easier

	Future Work
	Future Work: Generated Code Quality
	Future Work: Movement Between GUI Tools

	Conclusion
	Acknowledgements
	References

