Falcon: Balancing Interactive Latency and Resolution

Sensitivity for Scalable Linked Visualizations

Dominik Moritz
University of Washington
domoritz@cs.washington.edu

40,641,520

o 40,000,000 80,000,000 120,000,000
Flights selected

160,000,000

Departure Time [12,18.5] Reset Brush Hide Unfiltered

10,000,000

5,000,000

Y - *.Illllﬁlllllﬁ“lp_ o .
[2 4 6 8 10 12 14 16 18 20 22 24 2 4

Bill Howe Jeffrey Heer
University of Washington University of Washington
billhowe@uw.edu jheer@uw.edu
Departure Date Hide Unfiltered X:[-20,60] Y: [10,-20] Reset Brush Hide Unfiltered
8,000,000 60
6,000,000 559
50
4,000,000 .
2,000,000 40
Bttty e S I
Foal e
Arrival Time Hide Unfiltered & w| Tt
10,000,000 E w0 STt
< ® s o o -
. e @ e o o -
5,000,000 . ® ..
il
e o ceee- .
o c0e
Airtime in Minutes Hide Unfiltered ° -
{4510 5 0 5 10 15 20 25 30 35 40 45 50 55 60

Distance in Miles [0,1000] Reset Brush Hide Unfiltered

40,000,000
20,000,000

20000000
10,000,000

0

' 3 Y r T T T 0
0 400 80O 1,200 1,600 2000 2,400 2,800 3,200 3,600 4,000

Departure Delay
© 2,000,000 @ 4,000,000 (@) 6,000,000

@ oo (@ 10000000 (@) 12000000

|}
40 80 120 160 200 240 280 320 360 400 440 480

Figure 1: Falcon visualizing binned aggregates for 180 million flights [31] in a web browser. The brushes select short afternoon
flights with no more than a 10 minute arrival delay. The views update instantly when the user draws, moves, or resizes a brush.

ABSTRACT

We contribute user-centered prefetching and indexing meth-
ods that provide low-latency interactions across linked visu-
alizations, enabling cold-start exploration of billion-record
datasets. We implement our methods in Falcon, a web-based
system that makes principled trade-offs between latency and
resolution to optimize brushing and view switching times.
To optimize latency-sensitive brushing actions, Falcon rein-
dexes data upon changes to the active view a user is brushing
in. To limit view switching times, Falcon initially loads re-
duced interactive resolutions, then progressively improves
them. Benchmarks show that Falcon sustains real-time inter-
activity of 50fps for pixel-level brushing and linking across
multiple visualizations with no costly precomputation. We
show constant brushing performance regardless of data size
on datasets ranging from millions of records in the browser
to billions when connected to a backing database system.

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in CHI Conference on Human Factors in Computing Systems Proceedings (CHI
2019), May 4-9, 2019, Glasgow, Scotland UK, https://doi.org/10.1145/3290605.
3300924.

CCS CONCEPTS

+« Human-centered computing — Visualization systems
and tools; Interactive systems and tools; « Information sys-
tems — Online analytical processing engines.

KEYWORDS
data visualization; scalability; latency; brushing and linking

ACM Reference Format:

Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Bal-
ancing Interactive Latency and Resolution Sensitivity for Scalable
Linked Visualizations. In CHI Conference on Human Factors in Com-
puting Systems Proceedings (CHI 2019), May 4-9, 2019, Glasgow,
Scotland UK. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3290605.3300924

1 INTRODUCTION

To support effective exploration, interactive visualization sys-
tems must provide rapid response times for latency-sensitive
operations. Further, delays between user actions and corre-
sponding updates may break the perceived correspondence
between action and response, reducing the user’s engage-
ment with the system and leading to fewer observations
made [17, 26, 41]. As the scale and heterogeneity of available
data continue to increase, greater emphasis is being placed
on efficient exploration. However, large datasets incur de-
lays that negatively affect user’s exploration. Poor support
for interactive exploration can skew analyst attention to-
ward “convenient” and familiar datasets, causing selection

https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

biases. This work seeks to reduce the friction of using new
data by enabling cold-start analytics: exploration without
time-consuming precomputation.

Traditionally, the different stages of the data processing
pipeline—query processing, data transfer, and rendering—
have been optimized as independent modules. For example,
many efforts to reduce latency have centered on query pro-
cessing, paying scant attention to the corresponding inter-
face design. Recent GPU databases [35] can achieve query
times of seconds or hundreds of milliseconds over billions
of records; however, interactivity is still difficult to achieve
due to factors outside the scope of database optimizations,
including network latency and sub-optimal client-side ap-
plication design. Even short query times accumulate when
a Ul generates thousands of queries. And network-induced
delays remain unpredictable, especially in low-connectivity
or mobile networks.

In Falcon, we take a holistic approach to system design
by optimizing the interface and query systems together. We
prioritize the allocation of compute resources to interactions
for which users are more latency-sensitive, in particular
brushing and linking. For example, in Figure 1 a user can
resize the brush in the arrival time view, which immediately
updates all other views.

To eliminate latency for brushing interactions, we con-
tribute prefetching and indexing techniques. Rather than
treating every query as an independent request, we model
and optimize a user’s session with client-side state. In a ses-
sion, we leverage the fact that a user typically interacts with
only a single view at a time—the active view. When the user
moves the brush at pixel resolution, the aggregated data for
all other views—the passive views—are computed in constant
time using Falcon’s indexes. Brushing interactions are decou-
pled from computations over the raw data; the interactive
resolution of the brushes is decoupled from the bin reso-
lution. As a result, both index size and interactive latency
depend only on bin size and available pixel resolution and
are independent of the raw data.

When the active view changes, Falcon reindexes the data
to support interactions with the new active view. For datasets
of up to millions of records, the client can perform the nec-
essary aggregations. For larger datasets, aggregation can be
offloaded to a backing database system. Switching the ac-
tive view in Falcon incurs processing delays. Such switches
usually occur with a shift in a user’s attentional focus, a less
latency-sensitive action [7]. To limit view switching times,
Falcon initially lowers the resolution of the index data so
brush boundaries “snap-to” units larger than individual pix-
els. Analogous to progressive rendering or query processing
(e.g., online aggregation [10, 21]), this reduced interaction
resolution can then progressively improve.

D. Moritz et al.
Brushing View Switching Brushing
Latency Latency Resolution
—— ——

Precomputed Index Prefetching and

Progressive Interactions
Figure 2: The Falcon system uses indexes to optimize brush-
ing latencies and progressively improves interactive resolu-
tion to reduce switching times.

In summary, Falcon prioritizes brushing latency over view
switching delay, and it prioritizes view switching delay over
initial interactive resolution (Figure 2). Our prototype imple-
ments methods to support coordinated brushing and filtering
for cross-filter and aggregation applications (i.e., ensembles
of visualizations of 1D and 2D bin counts). The system avoids
expensive precomputation by prefetching only the data nec-
essary for interactions with a single active view, enabling
cold-start analytics. In Falcon, charts update in response to
brush changes at 50 fps. We demonstrate that this perfor-
mance is invariant on data sets ranging from thousands to bil-
lions of records. Because the system progressively improves
interactive resolution, we use interpolation to approximate
higher-resolution interactions. We make Falcon available as
open source software with supporting documentation and
demos at www.github.com/uwdata/falcon.

2 BACKGROUND AND RELATED WORK

Falcon is a visualization system for interactive brushing
and linking across coordinated views of binned aggregates.
Binned aggregates summarize data by dividing the domain
of variables into discrete units (bins), and then by aggre-
gating the data records in each bin [27, 40]. For example,
histograms are visualizations of bin counts. Each graphical
mark in a visualization of binned aggregates summarizes a
large subset of records in the original dataset. Falcon uses
binned aggregates because they convey both global patterns
(e.g., densities) and local features (e.g., outliers) and enable
multiple levels of resolution via the choice of bin size. To
focus on relevant subsets of the data, analysts select ranges
of data in one view using an interactive brush, which then
updates all linked views. Commercial data visual analysis sys-
tems such as Tableau [37], PowerBI [28], and Immerse [32]
use coordinated views with visual querying.

Falcon extends prior work on scalable interactive analysis
systems, incorporating findings from experimental studies
of the effect of latency on exploratory visual analysis.

Latency in Interactive Analysis

Informed by prior accounts of latency in psychology and
HCI [1, 6, 7, 22], Liu and Heer [26] conducted controlled
experiments (later replicated by Zgraggen et al. [41]) to un-
derstand how latency affects user behavior in exploratory

https://github.com/uwdata/falcon

Falcon: Scalable Interactive Linked Visualizations

visual analysis. Comparing different operations under two la-
tency conditions, they found that additional delays of 500ms
over the low-latency condition (20ms for both brush and
link and select, 100ms for pan, and 1s for zoom) negatively
impact user behavior. They also found that initial exposure
to delays negatively affects subsequent performance even
when the delays were removed in later sessions.

In recent years, system designers have reduced latency by
optimizing the different stages of the visualization pipeline:

data management, scenegraph construction, and rendering [26].

Their efforts have largely addressed each stage separately.
Many system designers have adopted 500ms as a uniform
latency threshold goal (e.g., [3, 13, 16, 34]); however, experi-
mental results indicate that some operations (e.g., zooming)
are less sensitive to delays than others. Liu and Heer [26]
found that panning, brushing, and range selection are the
most latency-sensitive of the studied operations.

Scalable Visual Analysis Systems

Interactive analysis systems with coordinated views run in
a client application. The data being analyzed can either be
loaded into this client or offloaded to a dedicated server. Ta-
ble 1 compares the characteristics of different visual analysis
systems for coordinated brushing and linking. For a dataset
small enough to be loaded client-side, visual analytics tools
support real-time interactivity using local indexes. Square’s
Crossfilter [39] uses bitmap indexes to support brushing and
linking of hundreds of thousands of records entirely in the
browser. Liu et al’s imMens [27] uses precomputed sum-
maries to enable real-time interactions in the browser, but
their interactions are limited to the binning resolution and a
single interactive brush.

For greater scalability, many systems adopt a client-server
architecture. In this approach, all components of the infor-
mation visualization reference model [6] are not necessarily
on the same machine. Instead, the server stores the data,
processes incoming queries, and sends reduced aggregates
to the client. In the client-server model, changes to the client-
side UI state require a request to the server; this incurs a
delay between the user action and the corresponding update,
a delay dominated by the network round-trip and query exe-
cution times. Since network bandwidth and latency are often
beyond the control of the tool designer, optimizations aim
to increase query performance. We discuss these techniques
in the next subsection.

Falcon supports both client-only and client-server setups.
For data sizes up to tens of millions of records, Falcon can
load the full dataset in the browser and index it there. For
larger datasets, costly computations can be offloaded to a
scalable server-side database system.

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

Scalable Data Processing for Visualization

Three main approaches can speed up query evaluation: par-
allel evaluation, indexing, and approximation.

Parallel evaluation. To reduce query latency in large-scale
online analytical processing (OLAP) systems [9], we can dis-
tribute work across multiple machines. However, the addi-
tional communication overhead typically exceeds the query
times necessary for interactive data exploration.

Indexing. Indexes and data cubes [20] significantly speed up
query evaluation by precomputing aggregates along some
dimensions. Specialized hierarchical data structures for vi-
sualization, like Nanocubes [24], are compact indexes of
spatiotemporal data that can fit in the main memory of a
single machine. The Nanocube structure leverages sparsity
to more efficiently build a specialized tree index that consists
of quadtrees (for spatial dimensions) or flat trees (for cate-
gorical attributes). The trees organize and aggregate data
records for each dimension, which are then combined into
a larger index. Hashedcubes [33] further improves this de-
sign with a more compact index. Profiler [23] also builds
in-memory data cubes for query processing. The size of the
data cube depends on the resolution and number of dimen-
sions, not on the data size. Thus, data cube approaches enable
scalable data processing on a single machine and support
low latency responses to aggregation queries over billions of
records. However, they can impose lengthy index building
times, e.g., Nanocubes takes up to 6 hours to build an index
for a dataset with 210M objects [24].

Liu et al’s imMens [27] uses a dense data cube structure
with precomputed aggregations. The size of the full data
cube is []; b;, where b; is the bin count for dimension i; it is
polynomial in the bin count and exponential in the number
of dimensions. To overcome the exponential growth with
more dimensions, Liu et al. decompose the full cube into a
set of overlapping 3- and 4-dimensional projections, or “data
tiles” This approach enables real-time brushing and linking
but limits interactions to a single brush. Moreover, since the
resolution of the imMens data cube is the resolution of the
visible bins, brushes snap to these bins. For large datasets, the
tiles must be precomputed since they are costly to calculate.

Falcon makes a critically different trade-off: it decomposes
a data cube so that it supports interactions with a single
active view only. The size of its full index is linear in the
number of views, which avoids a combinatorial explosion.
An index is loaded when the user interacts with a particu-
lar view. Falcon supports multiple brushes by conditioning
it on the brushes in the passive views. Further, each view
can be filtered by all brushes except the brush in the view
itself instead of only the union of all filters. Querying and
transferring the smaller index for a single view is less costly

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK D. Moritz et al.
System Square Crossfilter imMens Nanocubes OmniSci Immerse Falcon
Feature
Approach Client-side Index Dense Data Tiles Sparse Cube Live Queries View-Specific Tiles
Architecture Client Client (Server) Client-Server Client-Server Client (Server)
Demonstrated data size | 10° 1012 1012 1012 1012
Cold-start Yes No No Yes Yes
Interactive resolution Pixels Bins Pixels Pixels Pixels
Multiple brushes Yes No Yes No Yes
2D binning No Yes Yes Yes Yes
Zooming No Yes* Yes Yes Yes
View switching cost No No No No Yes

Table 1: Comparison of different approaches to scalable linked views. Not shown: PowerBI [28] and Tableau Public [38] use a
similar approach to Immerse; Hashedcubes [33] builds on Nanocubes [24] and shares similar properties.

* supported for predefined zoom levels

than doing so with a full data cube (e.g., imMens) that sup-
ports interactions with all views. The smaller index can be
computed and loaded on demand. We can also increase its
resolution to support brushing at pixel resolution rather than
snapping brushes to visible bins. Falcon supports cold-start
exploration of new datasets and is more flexible about zoom
levels (as both imMens and Falcon require a new index when
the user zooms).

Approximation. Approximate query processing systems [10]
estimate result values and their uncertainty using a data
sample. SampleAction [17], Vizdom [13], and Pangloss [29]
demonstrate that progressively refined approximate results
are often sufficient for exploratory analysis. However, these
systems do not support interactive brushing and linking.
Although the current version of Falcon does not use progres-
sively growing samples to approximate aggregates, we apply
an analog of these techniques in the interaction domain: we
initially load an index that supports interactions at a granu-
larity larger than single pixels, then we progressively refine
the granularity to one pixel.

Prefetching

To mitigate query and network latency, a system can try to
predict queries that the UI will likely issue, then precompute
and cache results [15]. Chan et al. [8] show this approach
for time series data. Battle et al. developed a series of sys-
tems [2, 3] that prefetch data tiles for a panning and zooming
interface. Falcon combines ideas, such as projected data cubes
in imMens [27], with prefetching methods. It prefetches an
index that supports all interactions with the current view,
and is conditioned on the brushes in all other views.

3 THE FALCON INTERFACE DESIGN

We now describe the Falcon interface, how users can inter-
act with its charts, and how it prefetches data to rapidly
update charts. Here, we highlight how Falcon works. The

Arrival Time Hide Unfiltped
12,000,000 &
10,000,000

8,000,000

Count

6,000,000
4,000,000

2,000,000

o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Arrival Time Show Unfiltered

8,000,000
6,000,000

€

3

8 4,000,000
2,000,000

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3: The top histogram plots filtered counts (blue bars)
relative to the unfiltered data (gray bars). A user can toggle
to show the filtered distribution only (bottom).

following section provides a more detailed discussion of its
implementation.

Falcon provides a dashboard of views that visualize the
number of records, grouped by zero, one, or two binned di-
mensions. Figure 1 shows Falcon loaded with a U.S. flight
delays dataset [31]. Using application constructor param-
eters, developers can configure the dataset, configure the
chart layout, and customize the chart design.

Charts for Zero-, One-, and Two-Dimensional Data

Falcon’s views show aggregates grouped by zero, one, or
two binned dimensions. We implement all visualizations in
Vega [36]. For zero-dimensional data, a view simply shows
the record count. Developers can choose among a vertical
or horizontal bar chart (e.g., Figure 1, top left) or a text view.
Blue bars show the number of records that match all filters,
while gray bars show unfiltered counts for comparison.

Falcon: Scalable Interactive Linked Visualizations

For views that are grouped by a single binned dimension,
Falcon uses bar charts (e.g., Figure 1, top center). Again, Fal-
con shows the total unfiltered counts as gray bars. Unfiltered
counts provide context and keep the domain of the Y-scale
constant as a user filters data. To see the filtered distribution
only, users can toggle the gray bars (Figure 3).

For bivariate views, we must use additional visual chan-
nels, such as size (e.g., Figure 1, right) or color. Size (e.g., cir-
cular area) is known to be more perceptually effective for
numerical comparison [12], though it requires significantly
more pixels compared to color encoding. Most importantly,
by encoding counts as the size of circles, Falcon can show
unfiltered counts as gray circles behind blue circles, estab-
lishing a consistent visual language across all three chart
types. Nonetheless, developers can switch to color encod-
ing [27, 29], but they can no longer see unfiltered counts.

Applying consistent binning schemes over 1D and 2D
views ensures compatibility of linked selections between
plots. Falcon uses Vega’s [36] binning algorithm to compute
bin width and offset from the scale range. The algorithm
may extend the scale range to find “nice” bin thresholds
(e.g., using only multiples of 5 and 10).

Brushing in the Active View

Upon initialization, Falcon shows unfiltered counts (Figure 4,
a). A user can then filter the data—for example, to show only
flights that arrive in the afternoon—by drawing a brush in
any view (Figure 4, b). We call the view with which the users
interacts the active view. Falcon aims to show the counts of
the selected subset and update the data for all other views—
the passive views—as the user changes the brush. The active
view does not change.

Because re-aggregating counts from the raw data for every
brush movement can be too costly, Falcon uses an index,
which is a compact summary that contains the details needed
to update passive views for any possible brush in the active
view. Falcon decouples rapid brush updates (using any of the
actions in Figure 5) from costly computations over the full
dataset. To limit its size, the index contains binned aggregates
for passive views at their bin resolution and supports brushes
in the active view at pixel resolution. Falcon achieves a much
smaller index than one that supports interactions with all
views [24, 27] by focusing on a single active view.

Switching Active Views

For a user to draw a brush in a different view, Falcon must
switch the active view, requiring it to make a new index.
For example, to change from brushing over arrival time to
distance (Figure 4, c), the index for the arrival view must be
replaced with an index that supports brushing in the distance
view. The new index must be conditioned on any existing
brushes (here, for arrival time), which means the counts in

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

the new index must be filtered according to the selected
ranges. The only exception is for the arrival time view itself,
since the bin counts should not be filtered by its own brush.
This rule generalizes to any number of brushes: the index
for each passive view must always be conditioned on the
brushes in all other passive views.

Zooming the Active View

When a user zooms in a binned chart, the visualized range
changes. Since scale changes require no new data, Falcon
can immediately give visual feedback and zoom the chart.
When the zoom interaction ends, Falcon computes a new
bin width and offset. If the computed parameters differ from
the current ones, Falcon computes updated bin counts for
the active view as well as a new index. The latter is needed
to support interactions at the new resolution. Recomputing
the index may impose delay. However, as discussed earlier,
research has shown that zooming is less latency-sensitive
than brushing [26].

Prefetching

Instead of waiting for the first interaction with a new ac-
tive view to create a new index, Falcon can prefetch indexes
before a user starts brushing. Figure 6 shows example tim-
ings for the brushing interactions shown in Figure 4. After
modifying the arrival time brush, an analyst might move the
cursor to hover over the distance view when preparing to
draw a new brush. In this case, Falcon would not yet perform
a view switch (i.e., change the index), but it would prefetch
the index. When the analyst starts brushing (around second
20), Falcon switches to the prefetched index. Hovering over
a chart is only one signal that we could use to predict what
chart the user will interact with next. Techniques from pre-
vious work on prefetching [2] could also be used, but we
found that mouse hover is a strong indicator of user atten-
tion [11]. In addition to prefetching on mouse hover, Falcon
can use long idle times between interactions to precompute
additional indexes.

4 FALCON SYSTEM IMPLEMENTATION

We now discuss how Falcon implements the interactions just
described in section 3.

An Index of Data Tiles

A Falcon index contains data needed to render passive views
for every possible brush in the active view. The data for
binned aggregate views with zero, one, or two grouping
dimensions can be stored in a zero-, one-, or two-dimensional
array; this projection of the data cube [20] is called a cube
slice. For example, the histogram in Figure 5 needs an array
with 24 entries for the flights for each hour of the day.

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

e Arrival Time Hido Unfiterod ° Arrival Time.
1200000 12000000

s wann " -
o . - .
§ eomeo § v o
. s s
- s s

N S

0 1 2z 3 4 5 6 7 8 9 0 M 123w E BB N 2D N

0 1 2 3 4 8 6 7 8 9 M 213146 W VBN N R D M

Distance in Miles Hide Unfitored Distance in Miles
0000000 40000000
0000000 0000000

T
20000000 8 moo0cco
10000000 10000000

o s . .
0 20 40 600 80D 1,000 1,200 1400 1,600 1,800 2000 2200 2400 2600 2,600 3000 3200 3400 3600 3400 4000

Airtime in Minutes Hide Unfitored Airtime in Minutes.
25000000 2000000
20000000 2000000

£ 15000000 15000000

oo -

someo somoon
. S ——— .
B

20 4 6 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 W0 40 420 450 460 460 500

112.185] Reset Brush Hide Unfittered

o ———
O 200 40 60 800 1,000 1,200 1,400 1600 1,800 2000 2:200 2400 2600 2800 3,00 3200 3400 3,600 3600 4000

2 40 60 B0 100 120 140 160 180 200 220 240 260 280 00 30 0 30 W0 400 420 440 460 460 50

D. Moritz et al.

12.165) Roset Brush Hide Unfitered

° Arrival Time
12000000

o]
© 12z 3 4 5 6 7 8 8 10 M 12 1 w567 M DN 2D M

Hide Unfitered Distance in Miles 500,1655] Reset Brush Hide Unfitered

‘L

0 200 40 60 50 1000 1200 1400 1,600 1,800 2000 2200 2400 2600 2800 3000 3,200 3,400 3600 380 4000
Hide Unitered Airtime in Minutes Hide Unfitered
25000000
200000
T
15000000
H
10000000

s000000

o
0 % 4 o0 8 10 120 140 160 190 200 220 240 200 260 300 30 240 %00 38 40 420 410 460 40 50

Figure 4: View switching in Falcon. (a) When the user initially loads Falcon, it shows unfiltered histograms. (b) The user can
draw a brush in the histogram of the arrival time (active view), and all other passive views will be updated. (c) After a view
switch the distance histogram is active, and the user can draw a brush there.

Arrival Time [12,18.5] Reset Brush Hide Unfiltered
12,000,000
10,000,000 Resize ‘
existing brush
8,000,000 L —
€
3 6,000,000 &
8 Draw + — B
400000C new brush Move

2,000,000 existing brush

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 5: Brush interactions in Falcon. Users can draw a new
brush or move and resize an existing one.

@ DISTANCE @ ARR_TIME @ AIR_TIME
19 20 21 22 23 24

remove
brush

Brush Location in Pixels

~ draw idle

resize| idle

Figure 6: Visualization of the timing for the brushing inter-
actions in Figure 4. The user first draws and then moves a
brush in the arrival time histogram before drawing and re-
sizing a brush in the distance view. Finally, the user deletes
the arrival time brush. Between interactions, the app is idle,
waiting user inputs.

The user can draw brushes in one-dimensional histograms
or two-dimensional visualization of bin counts. For a 1D
histogram, there are in theory an infinite number of possible
brush configurations. However, in a pixel display a histogram
that is p pixels wide has only p? distinct brushes, with a brush
start and end at two pixel locations. Storing p? cube slices

ount

c

Air time: 500 pixels

+ Start of brush

Arrival delay: 25 bins

- End of brush

Figure 7: A visualization of a data tile with departure time
as the active view and distance as the passive view. A lighter
color indicates larger cumulative counts. A histogram for
the passive view conditioned on a brush can be computed
as the difference between the cumulative bin counts at the
end of the brush and the start of the brush.

for each passive view remains prohibitively large. Falcon
therefore encodes these p? slices as p cumulative slices and
stores these cumulative counts in a single multidimensional
array, which (following imMens) we call a data tile.

Figure 7 shows a data tile with airtime as the active view
and arrival delay as the passive view. Since each column
stores the sum of all counts from the start, a specific cube
slice is the difference between the cumulative slices for the
start and end of the brush. For a fixed number of bins, this
difference is computed in constant time (O(1)).

Computing a sum (e.g., of counts) as the difference of
cumulative sums is often used in computer graphics and
is known as summed area tables [14] or integral images.
Summed area tables generalize to many dimensions; in Fal-
con, we use the same approach for brushing in 2D views.
Here, a cube slice for a passive view is computed from the
four corners of the brush in the active view. A data tile stores
the cumulative sums along the dimensions of the active view.

In addition to a data tile for each passive view, the index
must also store the cube slice for the case where there is no

Falcon: Scalable Interactive Linked Visualizations

brush. This is necessary because a brush that spans the full
extent of the active view does not contain all records in the
raw data when a user has zoomed in on a view.

In the general case, a data tile is an array whose dimension-
ality is the sum of the dimensionalities of its corresponding
active and passive views. In Figure 7, the active and passive
dimensions are each grouped by a single dimension, so the
data tile has two dimensions. This concept generalizes: to
support brushing in a 2D active view and filter a 2D passive
view, we need a four-dimensional array.

The size of a data tile is the product of the bin counts for
each dimension of both the active and passive views. The
number of data tile bins corresponding to the active view
depends on the active view’s pixel screen size. The ratio of
active view pixels to corresponding data tile bins determines
the interactive resolution, which is at most 1 pixel per bin.

Computing Data Tiles

We implemented two query systems to compute data tiles
for Falcon. The first is a query engine that runs in the user’s
browser alongside the Falcon Ul This engine supports queries
over tens of millions of records (as Apache Arrow files [18]),
above which latency becomes unacceptably large. The sec-
ond system generates SQL queries for a database server. The
scalability of this approach depends on the database system.
Both engines use a similar approach to compute data tiles.
For each passive view, they aggregate the records that are
not filtered out by any brush in other passive views. From
these counts, the engines build the cumulative data tile.

In-Browser Engine. The engine in the browser computes a
data tile by first creating an empty multidimensional array of
the binned dimensions. In a single pass over the filtered data,
it then counts how many records fall into each cell of the
array. In a final step, it computes the cumulative sums along
the dimensions of the active view. While the engine iterates
over the records, it counts how many records match the
filters in the other passive views but fall outside the extent of
the active view; it uses these values to determine unfiltered
counts. Since the size of the data tile is independent of the
size of the data, the running time of the last step is bounded
only by the number of bins in the dimensions of the active
and passive views. We implemented the engine in JavaScript;
thus, it is single-threaded and blocking.

Engine for Database Server. The database engine issues queries
that perform binning and aggregation in a scalable data-
base system, such as OmniSci Core [35] (formerly known
as MapD). Falcon generates aggregate queries that filter by
the brushes in the other passive views and group by the bins
in the dimensions of the active and passive views (Figure 8).
The same query counts the records that fall outside the ex-
tent of the active view. Because the queries for each passive

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

SELECT
CASE
WHEN airtime BETWEEN @ AND 500
THEN floor((airtime - @) / 1)
ELSE -1 END AS binned_airtime
, count(*) AS cnt
, floor((arrdelay - -20) / 5) AS binned_delay
FROM flights
WHERE arrdelay BETWEEN -20 AND 60
GROUP BY binned_airtime, binned_delay
Figure 8: The SQL query to compute the counts for Figure 7
and a special bin (-1) for the unfiltered counts. The cumula-
tive counts are computed on the aggregated data.

view use different filters and group-by clauses, they cannot
be naturally expressed as a single query. Query results are re-
ceived client-side and written into a multidimensional array.
Falcon computes the cumulative counts in the client, since
some databases (including OmniSci Core) do not support
window aggregates, which are necessary to compute cumu-
lative counts efficiently. Queries execute asynchronously
without blocking the UI.

Progressive Interaction

Switching the active dimension and zooming are not as
latency-sensitive as brushing. Nonetheless, delays may be
frustrating to users. To address this issue, we propose pro-
gressive interaction, an analog of progressive refinement of
approximate aggregate queries [21] or progressive loading
of images [4] and data [19], but in the interaction space. It
works as follows: initially, Falcon loads small data tiles, where
the bin count of the dimensions of the active view is lower
than the pixel count. The user can interact with the active
view, but the brush will snap to the closest available data tile
bin boundaries. Falcon then loads data tiles for interactions
at the pixel resolution in the background. Our current proto-
type implements progressive interactions in two steps: (1)
Falcon loads data at the resolution of the visible histogram
bins, and (2) Falcon loads the full pixel resolution.

Interpolation

When brushes snap to the closest bins, users cannot set
brushes at the pixel resolution. Continuous brushes have
two advantages. First, users can set brushes between bin
boundaries. Second, histograms in the passive views change
smoothly as users brush. When Falcon starts with low-resolu-
tion data in progressive interaction, it approximates brushing
at pixel resolution using interpolation. We interpolate be-
tween bin counts for the passive view at the bin boundaries
closest to the current brush ends. Though interpolation er-
rors are usually small and resolved as soon as high-resolution
data arrives, interpolation remains an approximation with
unknown error bounds. To make users aware of this, we de-
crease the opacity of passive views while users interact with

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

100
MW T ANV VNS VAT 50fps
30 30fps

System
O Falcon
Square Crossfilter (3M)

Frames Per Second (fps)
w
1

0.1 T T T T T T T T T T
20 40 60 80 100 120 140 160 180 200

Trial

Figure 9: Latency between brush interactions with one
chart and updates to 5 passive views, averaged across 5 tri-
als. We compare Falcon to Square’s Crossfilter with 3 mil-
lion records. Falcon’s performance is constant, close to
the browser’s maximum frame rate of 60fps regardless of
the full dataset size. Crossfilter reacts slowly when many
records are added to or removed from the brush.

an active view with low-resolution data tiles. Interpolated
bin counts for smooth brushing at pixel resolution let users
place brushes at a precise location; this helps users place
multiple brushes without waiting for a full resolution ver-
sion to load. Falcon uses linear interpolation for 1D brushes
and bilinear interpolation for 2D brushes.

5 BENCHMARK EVALUATIONS

We now present a benchmark evaluation of Falcon’s brushing
performance and the cost of indexing datasets of different
sizes. Falcon reduces latency by progressively computing
indexes with increasing resolution. We measure the time to
compute an initial low-resolution index and the errors of
interpolating pixel-level interactions from this data. We then
discuss our results and their implications.

Brushing Performance

Figure 9 compares Falcon’s brushing performance to Square’s
Crossfilter. For this benchmark, we programmatically update
the brush by iteratively changing its start and end. We run
experiments on a 13" 2014 MacBook Pro using the Chrome 70
browser, with Falcon performing all indexing on the client.
Using a chart configuration of 6 histograms for flight de-
lays [31], Falcon consistently updates the 5 passive views
at more than 50 frames per second. Due to its incremental
processing of original data records, Crossfilter’s query up-
date times spike when the brush moves over parts of the
view where many records are either added to or removed
from the filter. In addition, Crossfilter needs ~10s to parse
the CSV file and ~30s to initialize internal data structures
for 3M records. Falcon works on binary data [18]—there is
no parsing or initialization cost—and for up to 10M records
requires less than one second to switch views.

D. Moritz et al.

100,000 10,000,000

20,000
10,000
1,000,000

100,000

10,000

Log-scaled Number of Instances
N
]
3
Maximum Number of Record in the Brush

1,000

T T
0.00 0.01 0.02 0.03 0.04 0.05
Binned Wasserstein Distance (0.00055 Units per Bin)

Figure 10: Wasserstein distance between the true and inter-
polated bin counts for various brushes in the flight dataset.
Most instances have small distances. Some instances with
high selectivity (few tuples remain) have distances over 0.04.

View Indexing Cost

Before a user switches views, Falcon prefetches data tiles for
all passive views. Table 2 shows the mean, median, and 95th
percentile of the time it takes to prefetch data for all passive
views for different configurations and data sizes. We measure
indexing times for high resolution (500 pixels for 1D and 200
X 200 pixels for 2D) and bin resolution (25 and 25 X 25 bins).
We use three datasets: flights, weather, and GAIA. The flights
dataset [31] contains information about flight time, length,
distance, and delays for all 180M commercial flights in the
U.S. since 1987. The weather dataset [30] contains NOAA
weather statistics for different locations in the U.S. GAIA [5]
is a sky survey from the European Space Agency with records
for more than a billion stars.

We find that indexing time unsurprisingly increases with
data size. In the browser, view switching times stay below
5s even for datasets with 10 million records. Computing a
low-resolution index does not reduce indexing time in the
browser but can reduce average time by up to 6x with a
backing database server (here, OmniSci’s Core). The time
to load the first data tile in an index from Core is up to 24x
faster than the time to finish loading all data tiles in an index.

Approximation Error of Interpolated Brushes

To support brushing at pixel resolution even with low-reso-
lution data tiles, users can enable interpolation. In this exper-
iment, we measure interpolation error using the Wasserstein
metric (i.e., earth mover’s distance) between interpolated
and true bin counts. The metric is 1 when the complete mass
of a distribution must be moved from one end to the other.
We compare interpolated bin counts (from data tiles with
25 bins in the active dimension) in the flight dataset to true
bin counts for a various systematically enumerated brushes.
As Figure 10 shows, the majority of the cases show small
errors (<< 0.01). The error is largest (> 0.04) for highly
selective filters (< 0.2%) since bin counts with few records
are more susceptible to noise, and the Wasserstein metric
compares two distributions.

Falcon: Scalable Interactive Linked Visualizations

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

Dataset Engine Size Views Indexing at Pixel Resolution Indexing at Bin Resolution
Mean Median Py Mean Median Py
Weather Browser 1M 1X0D,6X 1D 0.34 0.33 0.38 0.33 0.33 0.38
Weather Browser 3M 1 X 0D, 6 X 1D 1.0 1.0 1.1 1.0 1.0 1.1
Weather Browser 10M 1 X 0D, 6 X 1D 1.2 1.2 1.3 1.2 1.2 1.2
Flights Browser 1M 1x0D,4x1D,1x2D 0.29 0.31 0.52 0.30 0.28 0.38
Flights Browser 3M 1x0D,4x1D,1x 2D 0.92 0.88 1.2 0.95 0.90 1.1
Flights Browser 10M 1X0D,4Xx1D,1x2D 3.0 2.8 3.9 2.8 2.6 3.4
Flights Core ™ 1x0D,4x1D,1x2D 0.15 0.15 0.13 0.11 0.30 0.13 0.13 0.11 0.13 0.11 0.15 0.13
Flights Core 180M 1X0D,4x1D,1Xx 2D 2.1 034 1.7 033 39 047 1.2 0.36 1.3 0.34 1.5 0.46
GAIA Core 1.2B 1x0D,3x1D,2x2D 338 14 6.5 1.3 94 2.6 58 1.0 53 093 9.5 15

Table 2: Mean, median, and 95th percentile time in seconds to compute data tiles for all views for different dataset sizes across
5 runs and for pixel resolutions (500 for 1D and 200 X 200 for 2D) and bin resolutions (25 and 25 X 25 bins). Times for OmniSci’s
Core include network roundtrip on a university network when accessing a cloud-based instance. Gray colors show the time
until the data tile for the first view is computed (applies only to non-blocking requests).

Discussion

Our benchmarks show that Falcon delivers constant brushing
performance regardless of how many records match the filter
defined by a brush. Its update rates are comparable to those
of imMens and outperform those for Square’s Crossfilter. Un-
like imMens, Falcon supports higher interactive resolutions
and multiple brushes. This demonstrates that even though
our prefetching methods were designed for client-server ap-
plications with massive datasets, precomputing a fixed-size
index also benefits client-only applications.

In addition to low latency, constant and predictable perfor-
mance are important. When a system behaves inconsistently,
users may adapt by only performing those interactions that
are fast [26]. For the Square Crossfilter application, users
might begin to explore only histograms showing few changes.
Falcon decouples brushing actions from the full dataset, and
all computations have constant complexity with respect to
data and brush sizes. Future systems might consider not just
the average or worst performance but also the degree to
which performance varies for different interactions.

In-Browser Engine Performance. Indexing times for small
datasets (< 1M records) in Table 2 are at most a few hundred
milliseconds, about the time needed to hover over a view
and begin to brush, so users may not even notice a delay. For
datasets up to 10M records, indexing times in our browser
engine are at most a few seconds, as shown in Table 2. After
these few seconds, users can brush without delays, a trade-off
not available in previous systems [24, 27, 32].

Since computing a low-resolution index in the browser
is not significantly faster than computing a high-resolution
one, we do not use progressive interaction here. Although
a high-resolution index has more bins, the vast majority of
time is spent iterating over the full dataset. The index has
the same size regardless of the full dataset’s size.

Database Engine Performance. For datasets that are too large
to be loaded and processed in the browser, Falcon can issue
queries to a database system. Our prototype uses OmniSci
Core, one of the fastest analytics database systems avail-
able [25]. Our benchmark evaluation shows that the time to
compute an index for the dataset of all commercial flights in
the U.S. (180M records) never exceeds a few seconds. How-
ever, for the GAIA dataset, computing a high-resolution in-
dex can take more than a minute.

A significant amount of time is spent receiving and de-
serializing database query results. Some of this overhead
results from limitations in the OmniSci API. For instance,
aggregated counts must be sent as a relational table instead
of as a dense multidimensional array. Nevertheless, while
the index is loading, users can already be drawing a brush
in the active view.

To further improve the user experience, Falcon leverages
two observations from the benchmark. First, loading the ini-
tial data tiles takes about a second. Thus, Falcon’s UI can up-
date individual passive views as soon as their data tiles have
been loaded and provide visual feedback. Second, low-reso-
lution indexes load much faster using the database-backed
engine. Our progressive interaction method leverages these
faster query times to update passive views faster—improving
average initial load times by 5%, from ~30s to ~6s—and then
progressively improves them as high-resolution indexes are
loaded. Our experience shows that view switching times are
reasonable, but more careful assessment of how these delays
affect people’s behavior remains as future work.

Falcon’s interpolation of high-resolution interactions from
low-resolution data tiles enables progressive interactions
without snapping brushes to the low resolution. Our mea-
surements in Figure 10 show that the interpolation error
is negligible in most cases. The largest errors occur when
brush filters are highly selective. Since Falcon visualized bin

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

counts by default on the scale of unfiltered data (Figure 3),
the filtered bin counts and any visual differences in the chart
are small. Moreover, when filters are highly selective and
visualizations of aggregates are based on few records, the vi-
sual gestalt of the chart is susceptible to noise in the data. In
general, analysts should make judgments about distributions
based only on large samples.

6 LIMITATIONS AND FUTURE WORK

Falcon’s index is significantly smaller than that in previous
approaches (e.g., [27]), allowing it to be computed on the
fly from a single scan by the backing database under appro-
priate latency assumptions. To support datasets that are too
large to be scanned within a given latency threshold, Falcon
uses existing databases to compute the necessary aggregates;
it can take advantage of approximation and sampling tech-
niques from the database literature. However, our prototype
does not yet apply these approximation techniques.

For binned aggregate plots, the data necessary to render
visualizations depends only on pixel resolution and not data
size. This common assumption enables visualizations whose
visual complexity is invariant to the size of the full dataset.
Thus, Falcon does not support non-aggregated views where
each record is rendered as a separate mark. Future work
might involve separate marks for outliers. Our prototype
system implements aggregate visualizations of the counts
with zero-, one-, and two-dimensional grouping by bins. We
have not yet implemented grouping by categorical dimen-
sions, but we plan to add them.

Falcon assumes that a user interacts with a single view at
a time. On a desktop computer with a mouse, this assump-
tion is trivially met. However, on touch-enabled devices, a
user could use both hands to modify multiple brushes si-
multaneously. We believe that this scenario is rare. We con-
ducted informal user observations with an iPad, and none
of the participants attempted to use simultaneous brushes.
Nonetheless, a future version of Falcon could support simul-
taneous brushes by combining the dimensions of multiple
active views, though at the cost of much larger data tiles.

While Falcon prioritizes brushing and linking as the most
latency-sensitive interactions [26], future systems should
use techniques presented here to prioritize zooming or other
interactions. By prefetching data at different zoom levels, a
system could support continuous zooming and re-binning.
Battle et al. [3] demonstrate prefetching techniques for pan-
ning interactions and show that prediction models can help
prioritize which data to prefetch. This was not necessary in
Falcon since the computation of data for one brush or for all
brushes both require one pass over the data. However, future
systems could use prediction models and prefetch in multiple
interaction vectors: e.g., linked brushing, linked selection,
zooming, and panning,.

D. Moritz et al.

The Falcon system does not take advantage of concurrent
queries: the in-browser engine is written in JavaScript and
thus single threaded, while OmniSci Core executes queries
sequentially. Future system iterations could speculatively
precompute indexes for interactions with a non-active view.
The cost of such aggressive prefetching could be offset by
caching results in a middleware layer, possibly even for other
users. The middleware could also leverage structure in the
data tiles to compress them. Neighboring cells in a data tile
often have similar values (see Figure 7, section 5), which
is similar to images or videos. The large body of work on
perception-aware image and video compression could be ap-
plied to compressing data tiles between the server and client.
Compression could significantly reduce the time needed to
transfer a Falcon index from server to client.

To support constant latency for brushing interactions, we
limit Falcon to summable aggregate functions (e.g., sum
and count). Our prototype only implements count. Some
aggregate functions are algebraic, meaning they can be con-
structed as a combination of summable functions; this in-
cludes the mean (sum, count) and variance (sum, count, sum
of squares). Distributive functions (e.g., min and max) can be
computed by iterating over matching bins, which results in
a linear (or, with extra data structures, logarithmic) lookup
time with respect to brush size. Future iterations of Falcon
could implement these aggregate functions.

7 CONCLUSION

In this paper we contribute the idea of prioritizing brushing
latency over view switching latency, as suggested by prior
work on the impact of latency on analysts’ behavior. We
also show that it is possible to lower the initial resolution of
interactions to improve view switching times. We implement
these methods in Falcon, our prototype system. Falcon sup-
ports brushing and linking across views over datasets of tens
of millions of records in the browser and billions of records
when connected to a backing database system, without the
need for costly precomputations or significant limitations to
supported interactions.

ACKNOWLEDGMENTS

Matthew Conlen helped to develop an earlier prototype sys-
tem. We thank Leilani Battle for technical feedback and
Sandy Kaplan for writing feedback. Daniela Huppenkothen
helped us understand the GAIA data. Jennifer Rogers sup-
ported us with her knowledge about distance metrics. Brian
Hulette and the Arrow team helped implement the in-browser
engine. The OmniSci team, and in particular Venkat Krish-
namurthy, Todd Mostak, and Randy Zwitch, helped us with
the Core database. This work was supported by a Moore
Foundation Data-Driven Discovery Investigator Award, NSF
Award 1740996, and by Microsoft.

Falcon: Scalable Interactive Linked Visualizations

REFERENCES
[1] Dana H Ballard, Mary M Hayhoe, Polly K Pook, and Rajesh PN Rao.

[10

(11

[12

(13

(14

(15

(16

[17

[19

[20

[t

—

—

—_

[l

[’

[l

—

=

=

1997. Deictic codes for the embodiment of cognition. Behavioral and
Brain Sciences (1997).

Leilani Battle, Remco Chang, and Michael Stonebraker. 2016. Dynamic
Prefetching of Data Tiles for Interactive Visualization. In International
Conference on Management of Data (SIGMOD ’16). ACM. https://doi.
org/10/gd7hg9

Leilani Battle, Michael Stonebraker, and Remco Chang. 2013. Dynamic
reduction of query result sets for interactive visualizaton. In Conference
on Big Data. IEEE. https://doi.org/10/gd7hgw

Thomas Boutell. 1997. PNG (portable network graphics) specification
version 1.0. Technical Report.

A G A Brown, A Vallenari, T Prusti,] H J de Bruijne, C Babusiaux,
C A L Bailer-Jones, Gaia Collaboration, and Others. 2018. Gaia Data
Release 2. Summary of the contents and survey properties. arXiv
preprint arXiv:1804.09365 (2018).

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman (Eds.). 1999.
Readings in Information Visualization: Using Vision to Think. Morgan
Kaufmann Publishers Inc.

Stuart K. Card, Allen Newell, and Thomas P. Moran. 1983. The Psy-
chology of Human-Computer Interaction. L. Erlbaum Associates Inc.
Sye-Min Chan, Ling Xiao, J. Gerth, and P. Hanrahan. 2008. Maintaining
interactivity while exploring massive time series. In IEEE Symposium
on Visual Analytics Science and Technology. https://doi.org/10/fbqvj9
Surajit Chaudhuri and Umeshwar Dayal. 1997. An Overview of Data
Warehousing and OLAP Technology. SIGMOD Record (1997). https:
//doi.org/10/bst468

Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approxi-
mate Query Processing: No Silver Bullet. In International Conference
on Management of Data (SIGMOD ’17). https://doi.org/10/ct5p
Mon-Chu Chen, John R. Anderson, and Myeong-Ho Sohn. 2001. What
can a mouse cursor tell us more?: correlation of eye/mouse movements
on web browsing. In CHI Extended Abstracts. https://doi.org/10/d7rvs2
William S. Cleveland and Robert McGill. 1984. Graphical Perception:
Theory, Experimentation, and Application to the Development of
Graphical Methods. J. Amer. Statist. Assoc. (1984). https://doi.org/10/
gdvmwd

Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2015. Vizdom: Interactive Analytics Through Pen
and Touch. VLDB Endowment (2015). https://doi.org/10/gd7hg3
Franklin C. Crow. 1984. Summed-area Tables for Texture Mapping.
In Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH °84). https://doi.org/10/bbrtvf

Punit R. Doshi, Elke A. Rundensteiner, and Matthew O. Ward. 2003.
Prefetching for Visual Data Exploration. In Conference on Database
Systems for Advanced Applications (DASFAA °03). IEEE.

Philipp Eichmann, Carsten Binnig, Tim Kraska, and Emanuel Zgraggen.
2018. IDEBench: A Benchmark for Interactive Data Exploration. CoRR.
Danyel Fisher, Igor Popov, Steven Drucker, and m.c. schraefel. 2012.
Trust Me, I'm Partially Right: Incremental Visualization Lets Analysts
Explore Large Datasets Faster. In Conference on Human Factors in
Computing Systems (CHI °12). https://doi.org/10/f3tvr5

Apache Software Foundation. 2017. Arrow. https://arrow.apache.org/.
Michael Glueck, Azam Khan, and Daniel J. Wigdor. 2014. Dive in!:
Enabling Progressive Loading for Real-time Navigation of Data Visu-
alizations. In Conference on Human Factors in Computing Systems (CHI
’14). ACM. https://doi.org/10/cx3f

Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh.
1996. Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Total. In Conference on Data Engineering.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

https://doi.org/10/c6dskg

Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. On-
line Aggregation. In International Conference on Management of Data
(SIGMOD °97). ACM. https://doi.org/10/dgxgnm

Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How
Fast is Fast Enough?: A Study of the Effects of Latency in Direct-touch
Pointing Tasks. In Conference on Human Factors in Computing Systems
(CHI °13). ACM. https://doi.org/10/gd7hgz

Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein,
and Jeffrey Heer. 2012. Profiler: Integrated Statistical Analysis and
Visualization for Data Quality Assessment. In International Working
Conference on Advanced Visual Interfaces (AVI '12). ACM. https://doi.
org/10/gd7hg2

Lauro Lins, James T. Klosowski, and Carlos Scheidegger. 2013.
Nanocubes for real-time exploration of spatiotemporal datasets. IEEE
Transactions on Visualization and Computer Graphics 12 (2013). https:
//doi.org/10/bwrc

Mark Litwintschik. 2017. Summary of the 1.1 Billion Taxi Rides Bench-
marks. http://tech.marksblogg.com/benchmarks.html

Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency
on exploratory visual analysis. IEEE Transactions on Visualization and
Computer Graphics 12 (2014). https://doi.org/10/f3tvrw

Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. ImMens: Real-time
visual querying of big data. Computer Graphics Forum (2013). https:
//doi.org/10/f3tvr4

Microsoft. [n. d.]. PowerBI. https://powerbi.microsoft.com/.
Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang. 2017. Trust,
but verify: Optimistic visualizations of approximate queries for explor-
ing big data. In Conference on Human Factors in Computing Systems
(CHI ’17). ACM. https://doi.org/10/b7jt

NOAA. [n. d.]. Climate Data Online. https://ncdc.noaa.gov/cdo-web/
datasets. Accessed: 2018-09-12.

Bureau of Transportation Statistics. [n. d.]. On-Time Performance.
https://www.bts.gov/. Accessed: 2018-09-12.

OmniSci. [n. d.]. Immerse, Interactive Visual Analytics for Big Data.
https://www.omnisci.com/platform/immerse/.

Cicero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, and Joao
L. D. Comba. 2017. Hashedcubes: Simple, Low Memory, Real-Time
Visual Exploration of Big Data. IEEE Transactions on Visualization and
Computer Graphics (2017). https://doi.org/10/gdrbsx

Y. Park, M. Cafarella, and B. Mozafari. 2016. Visualization-aware
sampling for very large databases. In Conference on Data Engineering.
https://doi.org/10/gd7hg4

Christopher Root and Todd Mostak. 2016. MapD: A GPU-powered
Big Data Analytics and Visualization Platform (SIGGRAPH ’16). ACM.
https://doi.org/10/gd7hg8

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer.
2015. Reactive Vega: A Streaming Dataflow Architecture for Declar-
ative Interactive Visualization. IEEE Trans. Visualization & Comp.
Graphics (InfoVis) (2015). https://doi.org/10/gdqd7v

Tableau Software. [n. d.]. Tableau Desktop. https://tableau.com/
products/desktop.

Tableau Software. [n. d.]. Tableau Public. https://public.tableau.com/.
Square. [n. d.]. Crossfilter: Fast Multidimensional Filtering for Coordi-
nated Views. https://square.github.io/crossfilter/.

Hadley Wickham. 2013. Bin-summarise-smooth : A framework for
visualising large data. InfoVis (2013). http://vita.had.co.nz/papers/
bigvis.html

E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. 2017.
How Progressive Visualizations Affect Exploratory Analysis. IEEE
Transactions on Visualization and Computer Graphics (2017). https:
//doi.org/10/gbns23

https://doi.org/10/gd7hg9
https://doi.org/10/gd7hg9
https://doi.org/10/gd7hgw
https://doi.org/10/fbqvj9
https://doi.org/10/bst468
https://doi.org/10/bst468
https://doi.org/10/ct5p
https://doi.org/10/d7rvs2
https://doi.org/10/gdvmwd
https://doi.org/10/gdvmwd
https://doi.org/10/gd7hg3
https://doi.org/10/bbrtvf
https://doi.org/10/f3tvr5
https://arrow.apache.org/
https://doi.org/10/cx3f
https://doi.org/10/c6dskg
https://doi.org/10/dqxgnm
https://doi.org/10/gd7hgz
https://doi.org/10/gd7hg2
https://doi.org/10/gd7hg2
https://doi.org/10/bwrc
https://doi.org/10/bwrc
http://tech.marksblogg.com/benchmarks.html
https://doi.org/10/f3tvrw
https://doi.org/10/f3tvr4
https://doi.org/10/f3tvr4
https://powerbi.microsoft.com/
https://doi.org/10/b7jt
https://ncdc.noaa.gov/cdo-web/datasets
https://ncdc.noaa.gov/cdo-web/datasets
https://www.bts.gov/
https://www.omnisci.com/platform/immerse/
https://doi.org/10/gdrbsx
https://doi.org/10/gd7hg4
https://doi.org/10/gd7hg8
https://doi.org/10/gdqd7v
https://tableau.com/products/desktop
https://tableau.com/products/desktop
https://public.tableau.com/
https://square.github.io/crossfilter/
http://vita.had.co.nz/papers/bigvis.html
http://vita.had.co.nz/papers/bigvis.html
https://doi.org/10/gbns23
https://doi.org/10/gbns23

	Abstract
	1 Introduction
	2 Background and Related Work
	Latency in Interactive Analysis
	Scalable Visual Analysis Systems
	Scalable Data Processing for Visualization
	Prefetching

	3 The Falcon Interface Design
	Charts for Zero-, One-, and Two-Dimensional Data
	Brushing in the Active View
	Switching Active Views
	Zooming the Active View
	Prefetching

	4 Falcon System Implementation
	An Index of Data Tiles
	Computing Data Tiles
	Progressive Interaction
	Interpolation

	5 Benchmark Evaluations
	Brushing Performance
	View Indexing Cost
	Approximation Error of Interpolated Brushes
	Discussion

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

