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ABSTRACT 
Analysts need interactive speed for exploratory analysis, but 
big data systems are often slow. With sampling, data systems 
can produce approximate answers fast enough for exploratory 
visualization, at the cost of accuracy and trust. We propose 
optimistic visualization, which approaches these issues from a 
user experience perspective. This method lets analysts explore 
approximate results interactively, and provides a way to detect 
and recover from errors later. Pangloss implements these ideas. 
We discuss design issues raised by optimistic visualization 
systems. We test this concept with five expert visualizers in a 
laboratory study and three case studies at Microsoft. Analysts 
reported that they felt more confident in their results, and used 
optimistic visualization to check that their preliminary results 
were correct. 
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INTRODUCTION 
Data analysts want to be able to derive insights from increas­
ingly large datasets. Exploratory visualization, however, runs 
into an obstacle where the scale of the data is sufficiently large 
that a screen cannot render each point, and where database 
queries would take a long time to return. By sampling the 
dataset, though, we can create a visualization with approxi­
mate values in interactive time. This is known as Approximate 
Query Processing (AQP). 

There are several well-known challenges with approximations. 
The most critical of these is trust: approximate values can be, 
by their nature, possibly incorrect. In an exploratory visual­
ization, an analyst might see dozens of visualizations that are 
accurate 95% of the time. Can an analyst trust an approxima­
tion with a business-critical decision? 
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In this paper, rather than addressing the problems with AQP 
from an algorithmic or systems perspective, we formulate 
them as user experience problems. What user experience 
would enable analysts to gain the benefits of approximate 
queries, while still being able to trust the results? 

We propose an approach which we call optimistic visualization. 
Optimistic visualization produces approximate results quickly, 
and computes precise results in the background. The analyst 
can make observations on the approximation, and later check 
them against the precise results. 

We call this approach “optimistic” because the analyst expects 
the approximation to be very close to the precise value; in 
those rare cases when there is a significant difference between 
the approximate and precise results, the analyst can decide 
which parts of the exploration have to be redone. Optimism 
provides a way to detect and recover from errors, and so 
increases confidence in working with samples. The technique 
can be combined with other approximation techniques such as 
confidence intervals and online aggregation. 

We present Pangloss, an optimistic visualization tool based on 
AQP. With it, analysts can rapidly explore very large multi­
dimensional datasets by grouping, aggregating, and filtering. 
Working in a sample-based system affects the user experience 
of visual data exploration. We describe the design decisions 
that went into the system. We validated our decisions by 
running a user study with five participants exploring a 170 
million row dataset about flight delays; we then deployed our 
prototype system to three data scientists using their own data. 

BACKGROUND AND RELATED WORK 
The concept of optimistic visualization builds on past research 
on data exploration, AQP, and uncertainty visualization. We 
first discuss the importance of rapid iteration in exploratory 
data analysis, and then the ways in which it changes when 
working with very large datasets. Last, we focus specifically 
on sample-based queries and visualization. 

Exploratory Visualization 
Exploratory data analysis (EDA), a term coined by Tukey [38], 
is broadly understood as a process of examining multi­
dimensional data by looking at the distributions and corre­
lations of fields. As Card et al. [5] note, this process prizes 
iteration and speed of exploration; an analyst might look at 
dozens or hundreds of graphs as they get to know the data. 
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The process of moving through these dimensions is iterative. 
An analyst begins with a broad question, and creates views that 
address some part of it. This view can inform a more-specific 
question, leading them to create another view to address that 
question [42, 35, 34]. These increasingly-specific questions 
require analysts to change representations, to filter the data 
by zooming or filtering views, and to choose new fields to 
explore. Some of these views will contain interesting insights; 
others will be dead ends with less value. When the analyst 
has sufficiently addressed the broad question and follow up 
questions, they often continue with a new broad question and 
chains of specific follow up questions. 

Visualization tools—whether point-and-click, such as Tableau 
(an extension of Polaris [37]) and PowerBI, or programming, 
like Matplotlib—support this process with tools that allow 
users to rapidly specify and refine their visualizations. 

Each step in this process involves generating observations 
of the data. Optimistic visualization helps analysts confirm 
(or challenge) their observations. An observation is a single 
fact about the data; it is the unit of knowledge that allows 
an analyst to move on to the next step of their analysis [43]. 
For example, when examining a dataset of flight data, an 
observation might be “Delta is the airline with the most flights 
in the dataset.” It is a more modest unit than the insights that 
the research community has focused on as the outcome of the 
analysis process. An insight can bring in external context and 
the results of a number of queries; an example might be “the 
biggest airlines have trouble with congestion near the holidays, 
while smaller airlines do not” [43, 28]. 

The visualization system must be fast enough to enable itera­
tion. Liu and Heer show that analysts lose effectiveness when 
a result takes more than 500ms to return [24]; Norman argues 
that when a computer operation takes more than a second, 
users lose their flow of thought [27]. 

Big Data Visualization 
These requirements for responsiveness become urgent when 
dealing with large datasets. As Fisher [12] and God­
frey et al. [14] outline, when dataset sizes exceed even a few 
million records, analysts run into two fundamental issues: vi­
sual scalability and data processing scalability. 

It is impractical to display every element of a large dataset: 
the number of records may far exceed the available pixels. For 
example, drawing raw data in a scatterplot without aggrega­
tion leads to overplotting—drawing many points in the same 
place—and visual clutter. The data can be grouped by a di­
mension, however, and a single aggregate measure computed 
for each group. The simplest such aggregate visualization is a 
bar chart, in which each bar represents the aggregated value of 
a group. Elmqvist [9] outlines visualizations that work with 
aggregate data; Wickham proposes the bin-summarize-smooth 
framework [40] as a general strategy for visualizing big data. 

Data retrieval and processing are the other major bottleneck. 
Handling very large datasets can be comparatively slow. Ana­
lysts sometimes resort to an offline process: formulating and 
submitting a query, waiting for a result, and then formulating 
a follow up question. This is not only frustrating but requires 

analysts to carefully design their queries to be worth the wait 
and the resources. 

There are three major technologies to achieve more-responsive 
queries. Data cubes precompute and store partially-aggregated 
results; at query time, the system can assemble these partial 
answers quickly [23, 25, 15]. Unfortunately, these cubes 
require a designer to select the fields to optimize. Second, the 
query can be spread across many computers, which assemble 
an answer [4, 32]. In these distributed Online Analytical 
Processing (OLAP) systems [6], though, network latencies 
can last into the seconds. The third major approach is to 
sample the dataset. 

Approximate Query Processing 
Optimistic visualization is based on the technique of Approx­
imate Query Processing (AQP). In AQP, the tool uses a rep­
resentative subset, or sample, of the data; the goal is to look 
at less data more quickly. Tools can estimate the true value 
of an aggregation function based on that sample. As a simple 
example, we can approximate the sum of a set of values by 
computing the sum of 10% of the values and then estimating 
the true sum to be ten times the aggregate value of the sample. 
This value is an estimate, and carries some uncertainty, which 
can be expressed as error bounds. Those bounds widen with 
the variance of the data, and narrow with the square root of 
the size of the sample. 

Some tools create a sample of the data before the user begins 
their analysis. In these systems, the precision of the approx­
imation greatly diminishes as the analyst filters away more 
records. For example, every record in a census can help the 
approximation for “average age”, but far fewer will be helpful 
for “average age of unemployed men living in Aspen, Col­
orado”. Choosing a sample that is large enough to lead to 
statistically meaningful results while maintaining interactive 
response times is important. 

Sampling can be integrated directly into databases [30]; other 
systems build on different sampling and estimation methods [2, 
8, 22]. These systems pick a sample and compute a result 
along with estimated error bounds; the analyst may choose 
either a maximum amount of time that the query runs, or 
desired error bounds. Interactive systems tend to use time 
bounds to get a best-effort approximation within that time 
bound. 

Progressive Visualization with Online Aggregation 
Rather than forcing the user to settle for a fixed-size sample, or 
wait for the system to reach a fixed level of precision, Online 
Aggregation (OLA) picks ever-growing samples and displays 
results to the user; when the analyst determines the visualiza­
tion has tight-enough bounds, they can end the process. OLA 
computes aggregations and confidence intervals and returns 
them to the user. Hellerstein et al. [19] first suggested the 
idea; it has been adopted by the visualization community as a 
“progressive analytics” approach [13, 10, 36, 33, 39]. 

Optimistic visualization can be seen as an asynchronous form 
of progressive sampling; it places the updates in the back­
ground, allowing the analyst to continue their analysis without 



watching for updates. The CONTROL project [18] noted that 
progressiveness adds costs; e.g. “ripple joins” [16] require 
multiple passes over the data, and so may take longer to reach 
a precise result. Pangloss can use existing, highly-optimized 
database systems for the precise results. 

Visualizing Approximations 
There are a number of techniques for communicating approxi­
mate query results [31]. Commonly used methods are confi­
dence intervals [26], visualizing distributions [41], or visualiz­
ing possible instances of the underlying statistical model [20]. 
Researchers are less certain of ways to visualize uncertainty 
on some visualization types such as heatmaps. 

Even with the help of visualization, users struggle to correctly 
interpret uncertainty and can draw incorrect conclusions [21, 
7]. In a visual data exploration where an analyst creates tens 
or hundreds of visualizations, the “rare” cases when the true 
values are outside the estimated bounds become likely. Worse, 
many confidence estimates are inaccurate: Agarwal et al. ex­
amined logs of 70,000 approximate queries from Facebook 
and found a large fraction had error estimates that were too 
wide or too narrow [1]. 

Optimistic visualization ensures that precise results will even­
tually be available so that the analyst can discover places 
where estimates were unavailable, hard to understand, or far 
from the true value. 

OPTIMISTIC DATA VISUALIZATION 
We address the challenges of sample-based visualization with 
optimistic visualization. In an optimistic visualization system, 
an analyst begins by constructing a fast, approximate query 
and seeing results instantly. The analyst may choose to remem­
ber that query, in which case it will run in the background. 
While the query is running, the analyst continues their explo­
ration. The system allows the analyst to know when the query 
is complete; at which point the analyst can verify their obser­
vations. The system shows the error between the approximate 
and precise views. 

In most cases, the final result validates their earlier work. 
Should a past approximation turn out to be inaccurate, how­
ever, the analyst must then re-evaluate how much exploration 
must be redone. There are a number of edge cases for ap­
proximation: it is difficult to choose good confidence inter­
vals on some functions, such as percentile measures; some 
datasets have high enough variances that confidence intervals 
are extremely wide; and some approximations turn out to be 
incorrect. 

Even in these riskier scenarios, optimistic visualization allows 
the analyst to feel certain that their final results will confirm 
whether their assumptions were justified. Without optimism 
the analyst can only rely on the uncertainty—the estimated 
error of the approximation—to make a decision. The uncer­
tainty should be a good predictor of the approximation error; 
the true error of the approximation. However, only the precise 
results can confirm this; analysts have to know when the ap­
proximation error was significantly larger than the uncertainty. 
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Figure 1. The uncertainty implied by the confidence intervals from (A) 
is larger than the distribution uncertainty of 4 (here for illustration de­
fined as the sum of absolute, unnormalized differences). (B) are possible 
instances that stay within both the confidence intervals and the distribu­
tion uncertainty. The values for all groups in (C) are within the confi­
dence intervals but the distribution is off by 6. The sum of the values is 
always 12. 

In progressive visualization systems [13, 33, 39] analysts 
watch progressive updates as more data arrives. During the 
waiting period, though, values continuously change [11]. An­
alysts can be distracted by these dancing bars; they can also 
incorrectly assess trends as the confidence intervals converge. 
Progressive systems require accurate communication of uncer­
tainties so analysts can decide when to stop. However, some 
forms of uncertainty are difficult to visualize, and true errors 
can be outside the estimated bounds. Optimistic visualization 
defers the confirmation and moves the computation of the 
precise result into the background; analyst can continue their 
exploration sooner. 

An optimistic visualization is most effective when the com­
plete query takes long enough to get in the way of interactivity, 
but shorter than an analysis session—it is highly effective 
when a query takes several minutes to return. 

THE PANGLOSS SYSTEM 
We implemented optimistic visualization in the Pangloss sys­
tem. Pangloss is a web based UI that queries Sample+Seek [8], 
an AQP system. Because Sample+Seek has some unique 
features, we discuss it in some detail before presenting our 
interface. 

Sample+Seek for Approximate Query Processing 
Sample+Seek [8] is designed to be highly responsive for ag­
gregate queries on a single table. It incrementally loads more 
records into the sample until either the uncertainty bound is 
lower than a predefined threshold or until a timeout. Instead 
of uniformly sampling records—as many other AQP system 
do—Sample+Seek uses measure-biased sampling, a method 
that biases sampling according to the aggregation measure. 
Measure-biased sampling has a tremendous advantage over 
uniform sampling: fewer samples are necessary for the same 
accuracy in a visualization. This sampling method has been 
developed to optimize the distribution uncertainty. It is a 
metric of the uncertainty across all groups in the result, and 
is defined as the expected distance (e.g., sum of distances, 
Euclidean, etc.) between the normalized distributions of the 
approximate answer and the precise one. For example, the 
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Figure 2. The Pangloss UI, exploring a flight delay dataset, with a list of fields (A), chart specification forms (B), a textfield for filters (C), zoom 
specification (D), approximate visualization (E), visualization of the uncertainty (F), field for annotations and “remember” button (G), and a list of 
views in the history (H). Two precise results are ready, while a third is loading. 

Euclidean distance between the normalized distribution an- Sample+Seek supports aggregate measures such as count, 
swer x = (0.39√,0.61) and the approximation x̂ = (0.40,0.60) sum, and average. Queries can have multiple group-by di­
is ||x − x̂||2 = 0.012 + 0.012 = 0.014. mensions, of either categorical values or binned numerical 

values. Queries can also filter the data, based on boolean 
More general, the distribution uncertainty with Euclidean dis- predicates. When predicates are selective, AQP systems need 
tance is [8]: to look at many records before they find records that match 

the filters. Sample+Seek maintains indices that help rapidly  2 group i’s value estimated group i’s value identify matching records. Each query uses a different sample − 

     
∑  total group value total estimated group value because we limit the time per query. group i

Distribution uncertainty is different from familiar per-group 
confidence intervals [18, 13, 20]. Rather than seeing each 
group as having its own confidence interval, the distribution 
uncertainty is a total amount by which the whole visualization 
is likely to be imprecise. Distribution uncertainty recognizes 
that uncertainties are not independent. As Figure 1 illustrates, 
one group might be off by a lot, or many groups might be off 
by just a little. 

Besides the distribution uncertainty, we also compute a con­
fidence interval for each group. However, the sum of these 
per-group uncertainties are worst-case estimates, and can be 
significantly higher than the overall distribution uncertainty. 
When we visualize confidence intervals, the possible range 
of uncertainty they imply is far greater than the distribution 
uncertainty (Figure 1). For the analyst, knowing the overall 
distribution uncertainty means that they do not have to expect 
the worst case for all groups. 

In the algorithm a sample is always a strict subset of all rows. 
Even if we scan all rows, we can only get within a fixed factor 
of the precise answer. This prevents us from providing users 
with progressively improving results. 

In the original Sample+Seek [8], data samples were kept in 
memory; Pangloss uses a modified version that supports larger 
datasets and reduces the memory footprint by keeping the 
dataset as a randomly shuffled file on disk. Our version of 
Sample+Seek is able to respond within 100ms with acceptable 
levels of approximation error. 

Designing the Pangloss UI 
Sample-based visualizations require a different user experi­
ence than more traditional visualization systems. In this sec­
tion, we discuss the Pangloss user interface, highlighting de­
sign decisions that accommodate the unusual aspects of AQP 
and optimistic visualization. The interface is implemented as 
a web application, using the React framework and D3 [3]. 

http:0.40,0.60


The interface, shown in Figure 2, uses interaction paradigms 
well-known in visualization tools such as Tableau and 
PowerBI. On the left is a searchable schema (A) with fields 
that can be dropped to the chart specification (B). Below the 
chart specification form are fields for filtering (C) and showing 
the current zoom predicates (D). The largest area of the screen 
is taken up by the view (E) and its uncertainty (F). Above the 
view is a textbox for observations and a button to remember 
the current view (G), which computes the precise result for 
this view. Remembered views are listed in the history on the 
right; they are drawn as orange while they are still loading, 
and turn blue when precise result is available (H). 

Approximate Visualizations 
Pangloss supports two core visualization types: bar charts and 
heatmaps. The bar chart shows aggregated measures grouped 
by values; it can also be used as a histogram by binning nu­
meric fields. The heatmap, a generalization of density plot, 
allows users to see the interaction between two dimensions; 
aggregate values are encoded using a color scale. Each di­
mension of the heatmap can be binned. Other visualizations 
can be implemented in this system; in theory, any aggregation-
oriented visualization [9] can be accommodated. 

Because many queries have long tails, Pangloss limits the 
number of bars or cells that can be shown to a top k and shows 
a warning if groups are hidden (Figure 3-A). When dealing 
with samples, the values further down the tail are based on 
fewer samples, and so are likely to be very uncertain; we chose 
not to add tools to scroll over to the tail of the distribution. Of 
course, an analyst can filter the highest values, working their 
way down the distribution. 

The distribution uncertainty of the approximation is displayed 
above the main view (Figure 3-B). The system computes con­
fidence intervals for each group; however, these per-group 
intervals are worst case estimates (Figure 1). For bar charts, 
Pangloss draws the confidence intervals directly on the bar 
chart. As there is no standard way to show confidence inter­
vals for heatmaps, Pangloss instead displays a second parallel 
heatmap that shows uncertainty (Figure 7, right). In all visu­
alizations, tooltips show the group name or bin bounds, the 
approximate value, and the uncertainty (Figure 4). 

Zooming with Samples 
Pangloss supports zooming and filtering, like most visualiza­
tion systems. In in-memory visualization tools, zooming and 
focusing only change the domain of the dimensions and mea­
sures; the group categories stay constant. With samples, every 
zoom focus interaction changes the predicate, forcing a new 
query to run on the AQP system. Consequently, the aggregate 
value and the uncertainty can change. 

As we noted above, the groups themselves can change as the 
user adds filters: collecting a new sample might mean that 
numerical ranges might expand and new groups might appear. 
The semantics of filtering, then, call for a design decision. An 
analyst cannot know whether there are more groups to be seen 
until they filter. If the analyst filters ten categories down to 
three, do we interpret that as a negative filter, removing seven, 
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Figure 3. A bar chart for a result with a long tail. The view warns 
that it only shows the top groups (A). Above the chart is the distribution 
uncertainty (B). Tooltips in bar charts are shown for the area above the 
bar (C). 

Figure 4. Left, tooltips for approximations show the group, the value, 
and the associated uncertainty. Right, tooltips for precise results show 
how much the estimate was off. 

or a positive one, limiting to just those three? The difference is 
that “removing seven” might discover more groups (Figure 5). 

To ensure that analysts never lose information, Pangloss treats 
categorical filters as negative by default; analysts can explicitly 
select positive filters if they need. Similarly, with numerical 
data, the domain can change (Figure 9); we add an inequality 
constraint (as opposed to a range predicate) when the user 
brushes all the way to the end of an axis. 

Functions and Transformations with Samples 
In most visualization systems, the user can carry out trans­
formations and functions on the data. For example, it is easy 
to add a logarithmic transformation over a visualization, or 
to compute average by dividing sum by count. Distribution 
uncertainty, however, is a global measure across a view. As 
such, the distribution uncertainty for a value will be very dif­
ferent from the log of that same measure value; they will be 
based on different numbers of samples. Just as zooms must 
be computed as separate computed queries, so too must be 
transforms and functions. 

Many existing visualization systems and techniques build on 
assumptions that are not true when samples are used to approx­
imate results. With samples we cannot assume that the result 
of an aggregation query does not miss groups. Consequently, 
if we calculate the average of a measure as the ratio of the sum 
and the count, we can only do so for the common groups in 
the two samples. We cannot, however, compute the combined 
distribution uncertainty. 



Figure 5. Above, an approximate histogram of origin states for Hawaiian 
Airlines flights. Below, if we filter out Hawaii, a new query runs on 
the AQP system and the approximation also shows that New York and 
Alaska (arrows) are also origin states. Because the new predicate is more 
selective, the uncertainty decreases for all groups. 

Remembering Views and History 
The heart of optimistic visualization is the process of selecting 
a view and re-running its query to get a precise result. In 
Pangloss, we call this remembering the view. We wish to 
support analysts being able to look back at a past view, and 
verify the observation they made with it. 

One important design decision is which views should be re­
membered. We considered verifying every past view that 
Pangloss produces, modeled after Graphical Histories [17]. 
There are several disadvantages to keeping this complete his­
tory. First, we expect users to review the precise views; it 
would be overwhelming to review every view. Second, precise 
queries are computationally expensive; issuing hundreds of 
them can overwhelm back-end data systems. As such, we want 
to encourage users to remember only views that are relevant 
for observations. 

In Pangloss, we decided to make this an explicit process. The 
“Remember” button (Figure 2-G) stores the view in the history 
and runs the precise query in the background. We would like 
to encourage analysts to track the observations; we support it 
by allowing them to add a small textual annotation describing 
the remembered view. 

The entries in the history (Figure 2-H) change when a precise 
result is available: we render approximate views in orange 
shades, and precise views in blue. Views in the history are 
immutable, but users can revise their annotations to note new 
information. In addition, users can make a mutable (and ap­
proximate) copy of the view if they wish to modify it. 

Queries for precise answers are sent to a commercial 
SQLServer database. On current hardware precise queries re­
turn within 30seconds to a few minutes for datasets of around 
50GB to 1TB. 

Visualizing Approximation Error 

Figure 6. Above, approximate bar chart for count of flights out of Wash­
ington state, grouped by airline, with per-group confidence intervals and 
distribution uncertainty. Below, the precise result for the same chart 
shows the values as blue bars, the approximate result as orange lines, 
and highlights airlines that were missing from the approximation (e.g., 
Independence Air (dh) with 169 flights). 

Once the precise query has completed, an analyst must be able 
to verify whether their observation during the exploration was 
justified. Several types of changes might occur between the 
approximate and the precise views. First, the values of some 
groups can change; if the chart is sorted, this also means that 
bars might be in a new order. Second, some groups that were 
not in the chart before might have been added. Last, binned 
data might change its range. 

We wish to support the analyst in comparing the approximate 
and precise views. 

What should happen when a bar is added, or the relative order 
of sorted bars changes? There are advantages to both main­
taining stability, by keeping the layout of the approximate 
visualization with revised values, or precision by showing the 
precise view. We settled on the latter, because our major goal 
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Figure 7. Approximate (left) and precise (right) heatmaps, examining 
origin and destination states for Hawaiian Airlines. (Left) The approx­
imate view shows the estimated count above and the uncertainty below. 
(Right) The precise view shows the count above and the approximation 
error below. Both lower images toggle to show relative or absolute dif­
ferences. 

is encouraging users to interpret the view they see. The final 
visualization emphasizes the precise values. 

Visualizing the difference along with the true values in the 
same chart poses challenges similar to uncertainty visualiza­
tions; we use similar methods. Pangloss superimposes the 
approximate value on the bars as orange lines, as in Figure 6. 
This makes changes in order very visible, as the orange lines 
no longer decrease monotonically. When a new group appears, 
we highlight it with a gray striped background (Figure 8, right). 
It is worth noting that a histogram’s range might change be­
tween sample and final. Therefore, in the precise query, we 
fix the bin width and the offset so that the precise histogram 
always aligns with the approximate one (Figure 9). 

For heatmaps, one chart shows the true value, while the ap­
proximation error is shown in a separate chart (Figure 7). The 
analyst can toggle between seeing absolute error, which shows 
the difference between the estimate and the actual value, and 
relative error, measured as a percentage. We found that each is 
useful for different circumstances: relative error is good when 
cells have similar values; on the other hand, a small amount of 
error can still be thousands of percentage points from a small 
cell value. Consistent with how new bars are highlighted, any 
new cells have a diagonally striped pattern (Figure 8, left). 

USER STUDIES 
There are several motivating concepts behind Pangloss that 
we wished to validate. First, are analysts comfortable with 
incomplete or inaccurate results, and are they willing to use 
them to explore approximate data? Progressive visualization 
systems [13, 33, 39] allow analysts to linger at one view until 
it reaches a level of accuracy; Pangloss does not. Second, 
optimistic visualization expects users to proceed with their 
exploration even without precise results; we wanted to know 
whether they would do so. Last, we wanted to know how users 

Figure 8. To draw attention to new groups, the corresponding cells in 
heatmaps (left) and bars (right) are highlighted with a stripe pattern. 

Figure 9. Approximate histogram at the top shows that Hawaiian Air­
lines has short range (inter state) and long range (island to mainland) 
flights. The precise histogram below shows additional flights around 
5000 miles. The range has changed but bins are still aligned. 

would interact with precise results, and whether checking 
those results would interfere with their flow. 

We believed these questions would be best addressed by col­
lecting rich stories of users interacting with the system; we 
modeled our user study after Fisher et al. [13]. We carried out 
two studies. We first wished to establish that Pangloss works 
as a data analytics toolkit that can enable users to come up 
with usable insights. We chose a single dataset and recruited 
data analysts from within Microsoft. We encouraged them to 
explore the data, providing them with guiding questions. The 
shared dataset allows us to factor out feedback specific to the 
data. 

We wanted to also validate that this system works for real-
world situations. We solicited data scientists from Microsoft, 
and asked them to share a current dataset with us; we loaded 
it into Pangloss. We then invited them to explore the system 
and interviewed them about their experience. 



Flight Delay Study 
Our first study used the “BTS Flight Delays dataset” [29]. The 
full dataset is 70GB, and contains records on about 170 mil­
lion commercial domestic flights from the last three decades 
within the United States. Each record represents one flight, 
with its arrival and departure time and location, as well any 
delays and reroutes in flight. There are a total of 109 fields 
in the raw data; for the user study, we removed some of the 
sparser fields, to result in 78 fields. Pangloss is able to main­
tain the 100ms response time for histograms and bar charts at 
a 1%–2% uncertainty level; heatmaps had higher uncertainty 
of 2%–5%. Views with averages and highly selective predi­
cates have much larger errors. In contrast, a full SQL query 
on the dataset runs in one minute. 

We recruited five data scientists for the study. All participants 
were associated with a product or consulting team, including 
IT Support, software development, and post-deployment mon­
itoring. Each of them was familiar with creating visualizations 
in R, PowerBI, Tableau, or Excel. We call them P1 through 
P5 below. 

Three of the sessions were carried out in person; two others, 
with analysts located further away, were carried out by video-
sharing session. At Microsoft, it is not unusual to meet via 
video-sharing; all users were familiar with the technology. 
Sessions lasted an hour. We started sessions with a tutorial, 
which guided subjects through a series of training questions to 
help them learn the system. We then invited them to explore 
the data using the tool; we gave some introductory questions 
but invited them to pursue questions that caught their curiosity 
for half an hour. At the end of the time, if the users had 
not reviewed precise results, we encouraged them to do so. 
Near the end of the hour, we asked our subjects to discuss 
advantages and tradeoffs of Pangloss. 

We encouraged users to think aloud; all sessions were voice-
and screen-recorded. Remote users used the tool in their web 
browser, so that they did not suffer from video-sharing lag. 

Flight Delay Study Results 
During the study, most users were resistant, at first, to explic­
itly recording their observations: we needed to remind almost 
all users to record observations they were making. After the 
first few, however, it became more habitual for them to record 
their observations over time. Only one user refused to use the 
“remember” function. 

We had feared that some users would be unwilling to explore 
their data, knowing that their initial results were inaccurate; 
perhaps they would wait to ensure their earlier investigation 
was valid. We saw this only once; P2, mid-analysis, paused to 
wait for his remembered view to complete. A moment later, 
impatient, he resumed his flow, and continued to “remember” 
things. By the end of the study, four of our users were regularly 
“remembering” visualizations. Users “remembered” 4-7 views 
during their half hour. 

Some users found opportunities to check in on their history 
during the study. P4 said, “I was thinking what to do next— 
and I saw that it had loaded, so I went back and checked it 

. . . [the passive update is] very nice for not interrupting your 
workflow.” 

Interacting with Big Data: All users had dealt with slow 
queries in big data systems, and appreciated the speed of 
Pangloss. As P4 said, “[with a competitor] I was willing to 
wait 70-80 seconds. It wasn’t ideally interactive, but it meant 
I was looking at all the data.” All the users commented on the 
responsiveness of the system. 

Our users were also familiar with sampling; for example, P4 
had used sampling for other projects: “We can’t look at all the 
sensor data at once—it wouldn’t work. So we sample.” 

Waiting for Precise Results: We wondered whether analysts 
would find the precise version of the visualization useful: af­
ter all, they had already seen the approximate version. P1 
said, “From my perspective, [uncertainty] almost passed me 
by. Nothing that I saw after-the-fact fundamentally changed 
any conclusions." 

Despite that, this made Pangloss feel safer to him: P1 said 
he checked whether the precise results “are fundamentally 
different in a way that warrants my attention—if the top 5 
are different, that’s important.” P5 used precise results to feel 
more confident in the approximations: “[The precise view] is 
an enabler. [Sometimes] you have a doubt whether sampling 
has made it better or worse, but seeing something right away 
at first glimpse is really great.” 

Our participants most often decided to remember very un­
certain results: the large distribution uncertainty and wide 
confidence intervals cued them to “remember” their findings 
and request a more precise results. In contrast, they chose to 
trust more certain results. 

The data scientists also talked about the importance of present­
ing precise data to their teams. While they might be able to 
use sample data with approximation, P3 said, “I know some 
information gets lost when I use samples . . . If I want to give 
my boss specific numbers, I don’t want to use samples.” P2 
said, “full and complete data always makes the most sense.” 

We wondered whether going back to check the results of 
queries would disrupt their workflow. P4 felt that the color 
change to cue the arrival of precise results was not disruptive, 
and “the ability to keep working . . . and know that you will get 
a complete visualization is very handy.” 

Limitations: Users did bump into the limitations of Pangloss, 
which shows specific visualizations of aggregate data. P5 said 
“When I’m using R, it’s like I’m on a mountaintop, I can go 
anywhere I want; when I’m using your system, there is a path 
that I need to follow.” Similarly, P3 wanted to see lower-level 
data: “you want to go down to the sample level to see which 
samples are causing this pattern.” 

Case Studies 
Our second study emphasized real-world use of datasets. We 
recruited data analysts from an internal list of data scientists. 
We looked specifically for users who had datasets over 10 gi­
gabytes with structured tabular data, and selected three can­
didates. We ingested their data into Sample+Seek, and then 



scheduled meetings with the groups: we met with David in 
person, while we met remotely with Madhu and Faraz. 1 

We followed a similar protocol to the Flight Delay study: each 
session started off with a short demonstration and tutorial. 
When subjects made observations out loud, we encouraged 
them to “remember” the views. At the end of the experiment, 
if they had not reviewed some of the remembered values, we 
encouraged them to click through those observations, and to 
evaluate whether their observations had changed. These case 
study sessions ran between an hour and a half and two hours. 

Case Study 1: David and Software Crashes 
David works on the telemetry team for a family of software 
products. His team is responsible for helping developers iden­
tify which features are causing problems for their users. They 
do so by examining telemetry across multiple builds of their 
software, both beta and released, categorizing the circum­
stances under which software fails. 

David’s dataset consists of activities that users are carrying out 
in these products with error information. Their data collection 
gathers 100TB/day of raw timestamped event data. This 
is too much for their system (or for Pangloss) to analyze; 
instead, his team pre-aggregates this data into summaries, 
which average around 200MB/day. These summaries consist 
of activities, hierarchically categorized by product and feature; 
broken down by minute of the day; it stores the number of 
times that users attempted to use the feature, and how many 
of them succeeded. 

His team’s visualization technology cannot view more than a 
gigabyte of data, representing a week of data. This can miss 
out on deployment problems that emerge over longer ranges 
of time, and makes it hard to compare between builds of the 
software. Pangloss was able to load three months’ data. 

David is used to working with slow queries: as he began 
to navigate his data, he excitedly said that “instantaneous 
visualizations are great!” He freely jumped between different 
slices of the data, admiring “the power of being able to pivot 
so quickly.” David applied multiple filters to the data, limiting 
it by date, code branch, and application. 

At first, he did not see the utility in remembering his queries: 
“going back and looking at the more precise data would be 
valuable if I were drawing any real conclusions—if I was 
going to send an email to somebody. But in a lot of these 
cases, if I didn’t see anything too exciting in the approximate 
number, I’d be OK with that.” We insisted he remember his 
first few queries to get precise results; by partway through the 
session, he did so on his own. When we went back through 
his results at the end, he reflected “Now that I’ve been sitting 
here for an hour, after I go back, it makes a lot of sense [to 
have these annotations], but as I was doing it, I was thinking, 
‘I want to move on, I want to move on.” 

Like some of the users in the flight delay study, he began to 
think about the value of precise data: “A lot of what we do 
gets used in ship rooms and standups; ship decisions are made 

1All names are anonymized. 

on those numbers. Those meetings cost thousands of dollars a 
minute. You need super-precise data for them.” 

During the study, David ran into a surprising result: one day 
had an aberrantly low value for a particular data series. He 
went off wanting to delve into it more: “I’m going to go over 
this with my team and send them some screenshots. I want to 
find out what happened on 8/8 with this stream.” 

David had been limited by the amount of data they collected; 
Pangloss allowed him and his team to broaden their view. 

Case Study 2: Madhu and Search Terms 
Madhu works on the advertising platform for a search en­
gine. His team is responsible for trying to predict trends in 
searches and keywords. They analyze usage data from the 
search engine, looking for terms and concepts that are gaining 
in popularity. Madhu wanted to look at trends and changes in 
the popularity of these topics across different countries. His 
dataset consisted of topics, with categories, countries, and 
timestamps. As in David’s case, the dataset he gave us was 
pre-aggregated: each of these categories was then labeled with 
the number of impressions—that is, the number of people who 
searched for terms that matched this category—and the num­
ber of people who clicked through on those searches. Madhu 
gave us 994 million rows of data, covering eight months of 
usage. 

Madhu was excited that Pangloss could let him get to know 
the shape of his full dataset. In the past, he had not felt like he 
could explore his data: queries took too long, and so he would 
focus only on specific questions that he needed to answer. 

Madhu searched carefully for patterns: he wanted to find ways 
that the data changed in regular and systematic ways. He spent 
most of his time in the heatmap, looking at a dozen or more 
keywords at a time. He did manage to find trends in the data, 
including a weekly pattern in one keyword, and another that 
spiked over a month. He found these results useful enough that 
he later asked whether he could send us a new, less aggregated 
dataset, and asked for a follow-up appointment with his team, 
in the hope that more of his colleagues had an opportunity to 
understand how the data they worked with operated. 

Case Study 3: Faraz and Social Computing 
Faraz is a data scientist who works with a Twitter “firehose” 
feed. One of his projects is to assess the credibility of Twitter 
users. His team expects that Twitter users can be distinguished 
by their followers lists, and by the keywords they use. His 
dataset looks at Twitter users, their hashtags, and the people 
who they follow; his statistical algorithms also label users who 
are likely to be spammers. 

Faraz looked at the top k charts of the most commonly-used 
tags, finding terms like “brexit” and “rio2016” were popular; 
he contrasted this list to keywords tweeted by persons who 
were labeled as likely to be spammers. Looking at the precise 
view, he asked to look further down, at tail queries. 

Faraz encountered some of the unintuitive aspects of dealing 
with sample-based analysis: for example, when seeing the top 
ten keywords, his first impulse was to “remember” just the 
top keywords. This would not have the desired effect: the full 



query might discover new words, but his filtered list would not 
show them. 

Faraz became accustomed to seeing very high uncertainty 
levels for his high cardinality data. He began to use the ap­
proximate query as a draft, less concerned about the answer 
it showed and more concerned about whether it showed that 
he had the right query. “I’m doing exploratory data analysis 
and I don’t need full accuracy.” When he accidentally formed 
a view with a bad filter, he quickly noticed the approximate 
view was incorrect and adjusted the query; after he felt sure 
he had the right query, he remembered the view. 

Pangloss allowed Faraz to explore complex aspects of his data 
rapidly, and come back to check his results later. 

Discussion of User Studies 
We were gratified that users were able to use Pangloss to ex­
plore their large datasets, and take away actionable and novel 
conclusions. Users were willing to trust the approximation, 
and to generate precise results afterward. 

Our user studies taught us more about how users see approx­
imate data. Our users see precision broadly: they want both 
rapid interaction for exploratory phase, and to present precise 
results to decision makers. Precision is not just a way to verify 
the approximation, but is an end in itself. In small-data sys­
tems, the same tool can fulfill both these roles; here, Pangloss 
separated those goals. 

The process of recording observations during exploratory visu­
alization was unintuitive to all of our users. Most of our users 
were grateful to have been forced to record their observations, 
and later found it useful to reconstruct their path. This suggests 
that Pangloss does not have the right balance of encouraging 
users to record their observations. There is a broad spectrum 
of possible approaches–from notebook interfaces that require 
explicit queries, to systems that automatically recommend 
visualizations [42]; this design space would reward further 
exploration. 

Users wanted more features from Pangloss: several wanted to 
be able to see the underlying data: although big data demands 
aggregations, analysts wanted to see individual records to spot-
check their results, and to get a sense of what sat in a bucket. 
Other users asked for transformations, aggregations, and ways 
to project the data that Pangloss does not currently support. 

CONCLUSIONS 
In these conclusions, we note a number of implications of 
optimistic visualization that emerge from both the user study 
as well as from our design work. 

The concept of optimistic visualization can help users adopt 
approximate and progressive systems. It is comparatively easy 
to implement, but the benefits for the users are large. For 
example, user David used optimism to build confidence in the 
approximate results after seeing the results of precise queries. 
Some of our users needed precise data. Under progressive 
visualization, that means waiting until computation finishes. 
In Pangloss they could run it in the background. Future work 
should combine progressive and optimistic, and explore the 

design space to understand what best benefits users: a system 
might improve the results for remembered views in the back­
ground, allowing the user to check on progress and how the 
approximation has changed. 

Existing visualization tools and techniques make assumptions 
that do not hold for approximate results. In a sampling envi­
ronment, more selective predicates can have surprising effects. 
Additional groups may appear, and both aggregate values and 
uncertainty levels might change. The same can happen in the 
transition from approximate to precise results. New visualiza­
tion systems must be able to handle shifting axes and changing 
color scales. We will need to develop a vocabulary of visual 
cues to highlight order changes, new groups (Figure 8), and 
other qualitative changes. 

There are many opportunities to refine the user experience 
of optimistic visualization for data exploration to address the 
issues raised during the user studies. One question is how 
to identify whether a precise view is meaningfully different 
from the approximation. In Pangloss every precise result 
is treated the same; it could be valuable to highlight views 
with significant differences. Whether a change is significant 
depends on the observation: the observation that A is higher 
than B is different than observing that A > 50; the precise 
results might invalidate one but not the other. 

One interesting question is in deciding what to remember; 
our users found that the major challenge when using the sys­
tem. In Pangloss, users must select views explicitly. Pangloss 
supports an exploratory process; there are cues in the sets of 
visualizations that the analyst creates to decide which views 
are worth remembering. With better provenance tracking, we 
might be able to better decide which observations should be 
remembered; we might also group visualizations in the history 
by their broad tasks. 

Optimistic visualization comes from a close collaboration be­
tween database and visualization researchers. The ideas in 
this paper have emerged from understanding constraints and 
opportunities in both areas. We believe that building collabo­
rations between these two fields is critical for improving data 
analysis going into the future. 

This paper contributes the concept of optimistic visualization. 
We have showed a first implementation of optimism; and dis­
cussed ways in which the exploratory data analysis process 
is different under approximate data. We have shown ways to 
visualize the difference between the approximate and precise 
view. Last, we have presented the results of eight users work­
ing with an optimistic system, and showed that it can help 
meet their needs for both speed and precise results. 
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