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Fig. 1. Voyager: a recommendation-powered visualization browser. The schema panel (left) lists data variables selectable by users.
The main gallery (right) presents suggested visualizations of different variable subsets and transformations.

Abstract—General visualization tools typically require manual specification of views: analysts must select data variables and then
choose which transformations and visual encodings to apply. These decisions often involve both domain and visualization design
expertise, and may impose a tedious specification process that impedes exploration. In this paper, we seek to complement manual chart
construction with interactive navigation of a gallery of automatically-generated visualizations. We contribute Voyager, a mixed-initiative
system that supports faceted browsing of recommended charts chosen according to statistical and perceptual measures. We describe
Voyager’s architecture, motivating design principles, and methods for generating and interacting with visualization recommendations. In
a study comparing Voyager to a manual visualization specification tool, we find that Voyager facilitates exploration of previously unseen
data and leads to increased data variable coverage. We then distill design implications for visualization tools, in particular the need to
balance rapid exploration and targeted question-answering.

Index Terms—User interfaces, information visualization, exploratory analysis, visualization recommendation, mixed-initiative systems

1 INTRODUCTION

Exploratory visual analysis is highly iterative, involving both open-
ended exploration and targeted question answering [16, 37]. Yet making
visual encoding decisions while exploring unfamiliar data is non-trivial.
Analysts may lack exposure to the shape and structure of their data, or
begin with vague analysis goals. While analysts should typically exam-
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ine each variable before investigating relationships between them [28],
in practice they may fail to do so due to premature fixation on specific
questions or the tedium of manual specification.

The primary interaction model of many popular visualization tools
(e.g., [35, 44, 45]) is manual view specification. First, an analyst
must select variables to examine. The analyst then may apply data
transformations, for example binning or aggregation to summarize
the data. Finally, she must design visual encodings for each resulting
variable set. These actions may be expressed via code in a high-level
language [44] or a graphical interface [35]. While existing tools are
well suited to depth-first exploration strategies, the design of tools for
breadth-oriented exploration remains an open problem. Here we focus
on tools to assist breadth-oriented exploration, with the specific goal of
promoting increased coverage of a data set.

To encourage broad exploration, visualization tools might automati-
cally generate a diverse set of visualizations and have the user select



among them. However, for any given data table the choice of variables,
transformations and visual encodings leads to a combinatorial explo-
sion. Appropriate filtering and recommendation strategies are needed
to prune the space and promote relevant views. Further, automation
is unlikely to succeed on its own: as exploration proceeds, users will
inevitably wish to focus on specific aspects of the data, requiring a
browser that enables interactive steering of recommendations.

We present Voyager, a mixed-initiative system that couples faceted
browsing with visualization recommendation to support exploration of
multivariate, tabular data. Voyager exchanges specification for brows-
ing, providing an organized display of recommended visualizations and
enabling user input for both chart refinement and recommendation steer-
ing. To enable breadth-oriented exploration, Voyager privileges data
variation (different variable selections and transformations) over design
variation (different visual encodings of the same data). Underlying
Voyager is the Compass recommendation engine, which enumerates,
clusters and ranks visualizations according to both data properties and
perceptual principles.

Voyager and Compass describe visualizations using Vega-lite, a
new high-level specification language. Following in the footsteps of
the Grammar of Graphics [44, 45] and Tableau’s VizQL [35], Vega-
lite provides a convenient formalism for enumeration and reasoning
of visualization designs. It also enables hand-offs between different
visualization tools (e.g., for breadth- or depth-oriented exploration).

In this paper we describe Voyager’s motivating design principles,
interface design, and system architecture. We also present a controlled
user study focused on exploratory analysis of previously unseen data.
We compare Voyager with PoleStar, a state-of-the-art view specification
tool modeled on Tableau. Through analysis of both user performance
and preference ratings, we find that Voyager better facilitates initial ex-
ploration and leads to increased data variable coverage, while PoleStar
is preferable for answering more specific questions. We discuss re-
sulting implications for visualization tools, in particular the need to
integrate rapid exploration and targeted question-answering.

The systems described in this paper are all available as open-source
software. In addition to the contributions of the present work, we hope
these components will provide a shared platform for continued research
on visual analysis and visualization recommendation tools.

2 RELATED WORK

Voyager draws on and extends prior research on exploratory search
interfaces, visualization tools, and automated visualization design.

2.1 Exploratory Search

Voyager is partly inspired by work on exploratory search [26, 43],
which shares a number of characteristics with exploratory data anal-
ysis (EDA) [15, 37]. Both involve activities of browsing (gaining
an overview and engaging in serendipitous discovery) and searching
(finding answers to specific questions). Users must clarify vague in-
formation needs, learn from exposure to information, and iteratively
investigate solutions. In either exploratory search or EDA, people may
be unfamiliar with the resources at hand (e.g., specific datasets), in the
midst of forming goals, or unsure about how to best achieve their goals.

Exploratory search is typically supported through browser interfaces.
Faceted browsing [47] is a popular approach for exploring collections
in which users specify filters using metadata to find subsets of items
sharing desired properties. Interactive query refinement — by up-voting
or down-voting metadata or items [21, 22] — can further facilitate
exploration. In addition, recommender systems (sometimes in the form
of collaborative filtering [18]) can be used to populate a browser with
ostensibly relevant items, particularly when the number of items renders
manual inspection intractable.

Here we seek to adapt these approaches to the domain of exploratory
visual analysis. We contribute a browser interface for statistical graph-
ics of a single relational table, and support navigation using facets such
as the data schema, applicable data transformations, and valid visual en-
codings. As the set of possible charts is typically too large to manually
inspect, we also contribute a visualization recommender system that

attempts to produce relevant and perceptually effective views based on
a user’s current exploration state.

2.2 Tools for Visualization Construction
Visualization tools offer various levels of expressivity for view construc-
tion. Chart typologies, such as the templates provided by spreadsheet
programs, are a common form of specification. While easy to use, they
typically support a limited range of charts and provide little support for
iterative view refinement, a crucial component of EDA.

Visualization toolkits (e.g., [5, 6]) and design tools (e.g., [30, 32]) en-
able intricate designs but require detailed specification, hindering rapid
exploration. Higher-level grammars, such as Wilkinson’s Grammar of
Graphics [44, 45], can generate a wide-range of statistical graphics, but
still require textual specification.

On the other hand, Tableau (formerly Polaris) [35] enables similar
specification of visualizations using a graphical interface. Users drag-
and-drop data variables onto visual encoding “shelves”; the system
then translates these actions into a high-level grammar (VizQL), en-
abling rapid view creation for targeted exploration of multidimensional
databases. Voyager adopts a similar grammar-based approach to rep-
resent visualizations; however, it automatically generates views and
allows users to browse a gallery of recommended views.

2.3 Visualization Recommendation
Much existing research on visualization recommendation focuses on
suggesting visual encodings for an ordered set of user-specified data
variables. Mackinlay’s APT [24] proposes a compositional algebra
to enumerate the space of encodings. It then applies a set of expres-
siveness and effectiveness criteria based on the work of Bertin [4] and
Cleveland [8] to prune and rank the set of visualizations. Sage [31]
extends APT with a taxonomy of data properties for recommending
visualizations. Tableau’s Show Me [25] introduces a set of heuristics to
aid in the construction of small multiples and recommend chart types.
Voyager draws on this line of work, for example using expressiveness
and effectiveness criteria to evaluate visual encoding options. Voyager
extends this prior research by contributing methods for also recom-
mending data variables and transformations, and enabling interactive
browsing and refinement of multiple recommendations.

After creating valid views, some tools [33, 46] rank views based on
statistical properties to recommend interesting relationships between
variables in the dataset. Other tools like SemViz [10] and VISO [41]
recommend data to visualize using knowledge ontologies from the se-
mantic web. They rely on data having extensive semantic labels, which
may not always be available. Other systems [7, 11, 48] recommend
visualizations based on analytical tasks and handle a small number of
predefined tasks by design. Inferring the user’s task or asking the user
to select one may preempt the iterative examination process at the heart
of EDA. In the absence of perfect knowledge about the user’s task,
Voyager presents visualizations of appropriate yet diverse view types
that cover a variety of data variables for analysts to examine.

Multiple visualizations are often presented in a gallery to facilitate
data exploration. The classic Design Galleries work [27] shows al-
ternatives of user-generated views by varying the choice of encoding
parameters. Van den Elzen [38] similarly allows users to browse a small
number of parameter variants using small multiples of alternative views.
Both allow users to explore a small neighborhood of the visualization
specification space. In contrast, Voyager presents both data variations
and design variations to facilitate broader data exploration.

VizDeck [29] presents a gallery of recommended charts based on
statistical properties of interest. The system includes a voting mech-
anism by which users can adjust the ranking and supports keyword
queries to search for charts. Voyager is instead designed to support
browsing, which is more suitable for exploratory tasks [43]. Voyager
seeks to promote broader coverage of the search space and navigation
by including or omitting selected data variables.

3 USAGE SCENARIO

We first motivate the design of Voyager with a usage scenario. We illus-
trate how an analyst can use the system to examine data about cars [17].
The dataset contains 406 rows (cars) and 9 columns (variables).
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Fig. 2. The main gallery shows univariate summaries upon loading.

Fig. 3. Selecting horsepower updates the main gallery. (a) The exact
match section shows different transformations for horsepower. (b) The
suggestion section shows charts with suggested variables in addition
to horsepower. (c,d) Each section’s header bar describes its member
views. (e) Hovering over a point reveals a tooltip with more information.
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Fig. 4. The expanded gallery for cylinder, horsepower, and acceleration.
(a) The main panel presents the selected chart in an enlarged view. (b)
The sidebar shows alternative encodings for the expanded data.

Upon loading the data, the analyst examines the list of variables in
the schema panel and their univariate summaries in the main gallery
(Figure 2). Starting from the top left, she observes that most of the cars
have 4, 6, or 8 cylinders (Figure 2a). Using the toggle button ( ) to sort
the name histogram by number of records, she notices that Ford Pinto
has the highest frequency, with 6 records (Figure 2b). The majority
of the cars are from origin A (coded information, Figure 2c) and the
years 1970-1982 (Figure 2d). Most of the quantitative variables appear
to have log-normal distributions except for acceleration, which looks
normally distributed (Figure 2e).

Intrigued by horsepower, the analyst clicks that variable in the
schema panel. The system in turn updates the gallery with relevant vi-
sualizations (Figure 3). The exact match section (Figure 3a) lists charts
with varied transformations of horsepower. The analyst inspects the dot
plot of horsepower and hovers over the maxima (Figure 3e) to discover
that the car with highest horsepower is a Pontiac Grand Prix. She then
glances at the suggestion section (Figure 3b), which shows charts with
additional variables. She notices a correlation between horsepower
and cylinder, and bookmarks the view so she can revisit it for targeted
question answering after she completes her initial exploration.

The analyst wonders if other variables might be correlated with both
horsepower and cylinder, so she selects cylinder in the schema panel.
The display updates as shown in Figure 1. Looking at the first view in
the suggestion section (Figure 1, leftmost view in the bottom section),
she sees that acceleration is correlated with both variables. The analyst
would like to see other ways to visualize these three variables, so she
clicks the view’s expand button ( ). This action opens the expanded
gallery (Figure 4), which shows different encodings of the same data.
She selects a small multiple view grouped by cylinder (Figure 4b), so
she can easily spot outliers in each group (Figure 5).

At this point, the analyst wants to explore other parts of the data. She
clicks the reset button to clear the selection and starts selecting new vari-
ables of interest to look at relevant visualizations. As her exploration
proceeds, she bookmarks interesting views for future investigation in
the bookmark gallery (Figure 6).

4 THE DESIGN OF VOYAGER

In this section we present our motivating design considerations and
describe the design of the Voyager user interface. We defer discussion
of technical implementation details to the next section.
4.1 Design Considerations
While creating Voyager we faced many design decisions. The interface
should not overwhelm users, yet must enable them to rapidly browse
collections of visualizations with minimal cognitive load. To guide
our process, we developed a set of considerations to inform visual-
ization recommendation and browsing. These considerations were in-
formed by existing principles for visualization design [24], exploratory
search [14, 43], and mixed-initiative systems [19], then refined through
our experiences across multiple design iterations.

C1. Show data variation, not design variation. We adapt this
well-known maxim from Tufte [36] to the context of visualization
galleries. To encourage breadth-oriented exploration [28], Voyager
prioritizes showing data variation (different variables and transforma-
tions) over design variation (different encodings of the same data).
To discourage premature fixation and avoid the problem of “empty
results” [14], Voyager shows univariate summaries of all variables prior
to user interaction. Once users make selections, it suggests additional
variables beyond those explicitly selected. To help users stay oriented,
avoid combinatorial explosion, and reduce the risk of irrelevant dis-
plays, Voyager currently “looks ahead” by only one variable at a time.

C2. Allow interactive steering to drive recommendations. Ana-
lysts’ interests will evolve as they browse their data, and so the gallery
must be adaptable to more focused explorations. To steer the recom-
mendation engine, Voyager provides facet controls with which analysts
can indicate those variables and transformations they wish to include.

C3. Use expressive and effective visual encodings. Inspired by
prior work on automatic visualization design [24, 25], Voyager prevents
misleading encodings by using a set of expressiveness criteria and ranks
encodings based on perceptual effectiveness metrics [4, 8].



Fig. 5. Scatter plots of horsepower vs. acceleration, partitioned by cylinder. An analyst hovers the mouse over an outlier to view details-on-demand.

Fig. 6. A bookmark gallery of visualizations saved by an analyst.

C4. Promote reading of multiple charts in context. Browsing
multiple visualizations is a complex cognitive process, arguably more
so than image or product search. We must consider not only the com-
prehension of charts in isolation, but also in aggregate. When possible,
Voyager consistently orders related charts such that effort spent in-
terpreting one chart can aid interpretation of the next. For example,
Voyager aligns axis positions and uses consistent colors for variables
(Figure 1). Voyager organizes suggested charts by clustering encoding
variations of the same data and showing a single top-ranked exemplar
of each cluster. If desired, users can drill-down to browse varied encod-
ings of the data. Voyager also partitions the main gallery into a section
that involves only user-selected variables and a section that includes
additional (non-selected) variables recommended by the system.

C5. Prefer fine-tuning to exhaustive enumeration. Even a simple
chart might have a number of important variations, including the choice
of sort order, aspect ratio, or scale transform (e.g., linear vs. log). Rather
than using up space in the gallery with highly similar designs, Voyager
collapses this space of options to a single chart with default parameters,
but supports simple interactions to enable fine-tuning.

C6. Enable revisitation and follow-up analysis. Successful ex-
plorations may result in a number of insights worthy of further study.
Exploratory tools should assist the transition to other stages of analysis.
Voyager provides a bookmarking mechanism to allow analysts to revisit
interesting views or to share them with collaborators. By represent-
ing all visualizations in a high-level grammar (Vega-lite), Voyager can
easily export visualizations for publishing or sharing with other tools.

4.2 The Voyager User Interface

Voyager’s interface (Figure 1) consists of a schema panel (left) and a
visualization gallery (right). Analysts can select variables and desired
transformations in the schema panel; these selections become input
for the recommendation algorithm. The main gallery presents rec-
ommended visualizations. Each chart supports interactive refinement,
bookmarks, and expansion to increase the chart size and see related
views. Undo buttons are provided in the top panel (Figure 1, top).

4.2.1 The Schema Panel

The schema panel (Figure 1, left) presents a list of all variables in the
data table. By default the list is ordered by data type and then alphabet-
ically. For each variable, the schema panel shows the following items
from left to right: (1) a checkbox representing inclusion of the variable
in the recommendation, (2) a caret button for showing a popup panel
for selecting transformations, (3) a data type icon, (4) variable name
and function, (5) and a basic information button , which upon hover
shows descriptive statistics and samples in a tooltip.

To steer the recommendations (C2), users can click a variable to
toggle its inclusion or can select transformation functions in the popup
panel revealed by clicking the caret. Selected variables are also high-
lighted with a surrounding capsule. Similar capsules are used in the
gallery to facilitate comparison (C4). Data transformation functions
are indicated using bold capitalized text (e.g., MEAN).

4.2.2 The Main Gallery: Browsing Recommendations

The main gallery presents views that represent different data subsets
relevant to the selected variables. To prioritize data variation over
design variation (C1), each view in the main gallery shows the top-
ranked encoding for each unique set of variables and transformations.
To help provide meaningful groups (C4), the gallery is divided into
two sections: exact match and suggestion. The top of each section
(Figure 3c-d) contains a header bar that provides a description of its
member views. The exact match section (Figure 3a) presents views
that include only selected variables. In contrast, the suggestion section
(Figure 3b) includes suggested variables in addition to selected vari-
ables. If the user has not selected any variables (as in Figure 2), only
the suggestion section is shown, populated with univariate summaries
(C1).

Each entry in the gallery contains an interactive visualization. The
top of each view lists its member variables in capsules. The capsules for
user-selected variables (solid border, darker background, Figure 7a) are
visually differentiated from capsules for suggested variables (dashed
border, lighter background, Figure 7b). The top right of each view
(Figure 7c) contains bookmark and expand view buttons. During ex-
ploration, analysts can bookmark views they wish to share or revisit
(C6); bookmarked visualizations can be viewed in the bookmark gallery
(Figure 6). Analysts can also hover over data points to view details-on-
demand (Figure 5).

Voyager attempts to parameterize and layout charts such that reading
one chart facilitates reading of subsequent related charts (C4). To do so,
Voyager places charts with shared axes in close proximity to each other.
Moreover, Voyager suggests the same visual encoding (axis position,
sorting, spacing, palettes, etc.) for the same variable to aid scanning
and reduce visual clutter. For example, it uses a consistent color palette
for cylinders and aligns y-axes for cylinders and horsepower in Fig-
ure 1). To further aid comparison, all capsules for the same variable are
highlighted when the user hovers over a capsule.

A B C

Fig. 7. The top of each view shows user-selected variables (a), sug-
gested variables (b), and buttons to bookmark or expand the view (c).



Fig. 8. Voyager’s system architecture. Voyager uses Compass to gener-
ate clustered and ranked Vega-lite specifications. These specifications
are translated to Vega and rendered in the Voyager interface.

4.2.3 The Expanded Gallery: Inspecting Alternative Encodings
An analyst can click a chart’s expand view button to invoke the expanded
gallery (Figure 4). This mode allows analysts to interact with a larger
visualization and examine alternative visual encodings of the same data.
The top-right corner of the main panel (Figure 4c) includes controls
for interactive refinement (C5): transposing axes, sorting nominal
or ordinal dimensions, and adjusting scales (e.g., between linear and
log). Thumbnails of alternative encodings are presented in a sidebar.
Analysts can click a thumbnail to load the chart in the main panel.

5 THE VOYAGER SYSTEM

We now describe Voyager’s system architecture. Figure 8 depicts the re-
lationships between the major system components. Voyager’s browser
interface displays visualizations and supports user navigation and in-
teraction. Visualizations are specified using Vega-lite, a declarative
grammar that compiles to detailed Vega [40] visualization specifica-
tions. The Compass recommendation engine takes user selections, the
data schema and statistical properties as input, and produces recommen-
dations in the form of Vega-lite specifications. The recommendations
are clustered by data and visual similarity, and ranked by perceptual
effectiveness heuristics. Each of these components is implemented in
JavaScript, and is individually available as an open-source project.

5.1 Vega-lite: A Formal Model For Visualization
We developed the Vega-lite specification language to provide a formal
model for representing visualizations in Voyager. Vega-lite is mod-
eled after existing tools and grammars such as Tableau’s VizQL [35],
ggplot2 [44], and Wilkinson’s Grammar of Graphics [45]. Vega-lite
specifications consist of a set of mappings between visual encoding
channels and (potentially transformed) data variables. Like other high-
level grammars, these specifications are incomplete, in the sense that
they may omit details ranging from the type of scales used to visual
elements such as fonts, line widths and so on. The Vega-lite compiler
uses a rule-based system to resolve these ambiguities and translate a
Vega-lite specification into a detailed specification in the lower-level
Vega visualization grammar [40]. Though initially developed for Voy-
ager, Vega-lite can serve as a model for other tools. For example, we
built the PoleStar visualization specification tool (§6.1) using Vega-lite.

A Vega-lite specification is a JSON object (see Listing 1) that de-
scribes a single data source (data), a mark type (marktype), key-value
visual encodings of data variables (encoding), and data transformations
including filters (filter) and aggregate functions. Vega-lite assumes
a tabular data model: each data source is a set of records, where each
record has values for the same set of variables.

Vega-lite currently supports Cartesian plots (with mark types points,
bars, lines or areas), and pivot tables (with mark type text). Avail-
able encoding channels include position (x, y), color, shape, size,

level of detail (detail) for specifying additional group-by values,
and facets (row, column) for creating trellis plots [3, 36]. A speci-
fication of each encoding channel (encoding) includes the assigned
variable’s name, data type, scale and axis properties, and transforma-
tions. Vega-lite supports nominal, ordinal, quantitative, and tempo-
ral data types [34]. Supported transformations include aggregation
(summarize), binning (bin), sorting (sort), and unit conversion for
temporal variable (timeUnit). For example, year, month, and other
time abstraction values can be derived from temporal variables.

{
"data": {"url": "data/cars.json"},
"marktype": "point",
"encoding": {

"x": {
"name": "Miles_per_Gallon",
"type": "Q",
"summarize": "mean"

},
"y": {

"name": "Horsepower",
"type": "Q",
"summarize": "mean"

},
"row": {

"name": "Origin",
"type": "N",
"sort": [{"name": "Horsepower",

"summarize": "mean", "reverse": true}]
},
"color": {"name": "Cylinders","type": "N"}

}
}
Listing 1. A Vega-lite specification of the visualization shown in Figure 10.
The JSON object specifies a trellis of scatter plots for a data about cars.
Each plot shows for one origin (row) the mean miles per gallon (x) and
mean horsepower (y), broken down by the number of cylinders (color).
Origin and number of cylinders are nominal while miles per gallon and
horsepower are quantitative. The scatter plots are sorted by the mean
horsepower per origin.

Vega-lite makes default assignments for parameters such as axis
scales, colors, stacking, mark sizes, and bin count. These parameters
can be explicitly specified to override default values. Nominal variables
are mapped to ordinal scales by alphabetical order unless an explicit
order is provided. When assigned to color, nominal variables are
mapped to hue using Tableau’s categorical color palette, while other
variables are mapped to luminance. When a color channel is used
with a bar or area mark type, Vega-lite creates a stacked chart. The
band size of an ordinal scale is automatically adjusted based on the
assigned variable’s cardinality. Vega-lite determines properties such as
bin count based on the encoding channel: the default max bin count is
7 for color and 20 for positional encodings.

In the future, we plan to extend Vega-lite with additional features
such as cartographic mapping, polar coordinates, and layering multiple
variables (including dual axis charts). The goal of this work, however,
is to investigate different modes of visual exploration and the current
implementation of Vega-lite is sufficiently expressive for this purpose.

5.2 The Compass Recommendation Engine
The goal of the Compass recommendation engine is to support rapid,
open-ended exploration in Voyager. Compass generates an expressive
set of visualization designs (C3) represented using Vega-lite specifica-
tions. Compass also prunes the space of recommendations based on
user selection (C2) and clusters results into meaningful groups (C4).

Compass takes the following input: (1) the data schema, which
contains a set of variables (D); (2) descriptive statistics for each variable
including cardinality, min, max, standard deviation, and skew; (3) the
user selection, which consists of a set of selected variables (U ⊂ D),
preferred transformations for each variable, and a set of excluded
variables.
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Fig. 9. Compass’s 3-phase recommendation engine. (a) Variable selection takes user-selected variable sets and suggests additional variables (b)
Data transformation applies functions including aggregation and binning to produce data tables for each variable set. (c) Encoding design generates
visual encodings for each data table, ranks results by perceptual effectiveness score, and prunes visually similar results.

Compass enumerates, ranks and prunes recommendations in three
phases, taking output from each phase as input to the next phase. The
process is depicted in Figure 9. First, Compass selects variables by
taking user-selected variable sets and suggesting additional variables. It
then applies data transformations, including aggregation and binning,
to produce a set of derived data tables. For each data table, it designs
encodings based on expressiveness and effectiveness criteria (C3) and
prunes visually similar results to avoid exhaustive enumeration (C5).
The multiple phases of pruning and ranking allow Compass to constrain
the search space early in the generation process, and to produce clusters
of visualizations that are grouped by their underlying data tables.

Our initial Compass design is admittedly modest. Though more
advanced recommender systems are possible, the primary goal of this
paper is to develop and evaluate an overall approach to breadth-oriented
data exploration. In lieu of more sophisticated methods, we intention-
ally limit ourselves to “single-step” variable additions and interpretable,
deterministic heuristics for pruning and ranking. We view the design
and evaluation of improved recommenders (likely expressible within
the current Compass architecture) as important future research.

5.2.1 Selecting Variables

Compass first suggests variables beyond what the user has explicitly se-
lected, producing new variable sets for encoding. The primary goals of
this phase are to recommend additional variables that the analyst might
otherwise overlook (C1) and to avoid the “empty results” problem [14].

Prior to user selection, Compass suggests a univariate summary of
each variable. When a user selects a variable set U (of size |U | = k
), Compass returns a sequence of variable sets Σ = [U,V1,V2, ...,Vn],
where U is the original user selection, n = |D−U |, and each Vi contains
k+1 variables: the k user-selected variables U along with exactly one
additional (non-selected) variable vi ∈ D−U , such that Vi =U ∪{vi}.
For example, if a user selects {horsepower}, Compass may return
the variable sets U = {horsepower}, V1 = {horsepower, cylinder},
V2 = {horsepower, year}, and so on.

Compass recommends all non-selected variables (all vi ∈ D−U)
by default, but analysts can interactively exclude variables from the
suggestions to focus on a particular variable set of interest (C2).

The generated variable sets are returned in a sorted order. The user’s
selected variable set is always ranked first, as it is the most relevant to
the user’s specified intention. The remaining variable sets [V1,V2, ...,Vn]
are ordered by the type and name of the recommended variable vi, con-
sistent with the display order in Voyager’s schema panel. This approach
provides a predictable and consistent ordering, which works well for
the common case of datasets with a sufficiently bounded number of
variables to allow users to scroll through the recommendations. For
datasets with a large number of variables, we plan to extend Compass
to support multiple relevancy rankings based on statistical measures
(e.g., [33]) and allow analysts to select measures that fit their interests.

5.2.2 Applying Data Transformations
For each suggested variable set V ∈ Σ from the first phase, Compass
enumerates applicable transformations for each variable v ∈V to rec-
ommend an ordered set of data tables Γ.

Compass produces both raw tables without aggregation to provide
details and aggregate tables to provide summaries. For raw tables, each
variable is untransformed by default, but users can perform binning
if desired. For aggregate tables, variables either serve as measures
(values amenable to aggregation) or dimensions (values to group by).
By default, each quantitative variable is treated as a measure, while
each ordinal, nominal, or temporal variable is treated as a dimension.

Compass averages (MEAN) quantitative measures by default; users
can choose to apply other aggregation functions such as SUM, MIN,
MAX. Averages may be affected by outliers or mix effects [1], but are
also more likely to be generally useful. In our experience, defaulting
to sums results in plots that are not always meaningful and skewed
when the number of records varies across dimensions. Users can also
choose to treat quantitative variables as dimensions by either using
the untransformed values or binning. Compass determines the largest
units of time within the extents of temporal variables. For example, if a
variable spans within one year, MONTH is applied. Ordinal variables are
untransformed by default.

Derived tables are first ordered by the rank of its corresponding
variable set. (Tables derived from U come before tables from V1, which
in turn come before tables from V2, and so on.) For tables from the
same variable set, Compass then orders raw tables before aggregate
tables to provide a consistent ordering (C4).

5.2.3 Designing Encodings
For each data table T ∈ Γ, Compass applies visualization design best
practices drawn from by prior research [4, 9, 24, 25, 42] to generate
and rank a set of encodings ET (C3).

Generation. Compass first enumerates candidates for the encoding
set ET by composing permutations of data variables, visual encoding
channels, and mark types. It first assigns each variable v ∈ T to all
permitted visual encoding channels (Table 1) to generate a set of map-
pings MT . Then it generates each encoding candidate by combining
each mapping m ∈MT with each valid mark type.

Compass considers multiple criteria to determine whether a mark
type is appropriate for a given mapping m. For a given mark type,
some encoding channels are required, while some are disallowed (see
Table 2). For example, Compass requires a mapping to have both x
and y encodings if used with a line or area mark. Such constraints
ensure the production of appropriate visualizations (here, a proper
line or area chart). After determining the set of supported mark types,
Compass assigns the mark type that best respects expressiveness criteria
according to the rankings listed in Table 3, indexed by the data types of
the x and/or y encodings.



Data Types Encoding Channels
quantitative, temporal x,y > size > color > text
ordinal x,y > column, row > color > size
nominal x,y > column, row > color > shape

Table 1. Permitted encoding channels for each data type in Compass,
ordered by perceptual effectiveness rankings.

Mark Types Required
Channels

Supported Channels
X, Y Column, Row Color Shape Size Detail Text

point x or y X X X X X X
tick x or y X X X
bar x or y X X X

line, area x and y X X X X

text text and
(row or column)

X X X

Table 2. Required and permitted encoding channels by mark type.

In addition to Tables 1-3, Compass considers interactions among
visual variables (e.g., the perceptual separability of visual channels [42])
and avoids creating ineffective charts. It produces mappings that encode
color, size, or shape only when the mappings also contain both x and
y. In other words, Compass omits dot plots that use these encodings, as
they would likely suffer from occlusion and visual clutter.

Ranking. Compass ranks the generated encodings using perceptual
effectiveness metrics. Compass applies prior work by Cleveland [8]
and Mackinlay [24] to rank the effectiveness of each visual channel
based on a variable’s data type (Table 1). Compass also considers the
cardinality, or number of unique values, of a data variable. Encoding
high cardinality variables with color, shape, row, or column can lead
to poor color or shape discrimination or massive, sparse trellis plots.
Moreover, the effectiveness of each visual channel is not measured in
isolation. Since over-encoding can impede interpretation [42], Compass
penalizes encodings that use multiple retinal encodings (e.g., both
color and shape, or both color and size).

Compass takes into account that the produced charts will be pre-
sented in a gallery, with the goal of promoting charts that are easier
to read (C4). Vertical bar charts and histograms are preferred if their
dimensions are binned quantitative or temporal variables. Otherwise,
horizontal bar charts are preferred as their axis labels are easier to read.
Horizontal line and area charts are favored over vertical ones. Compass
also privileges encodings that use less screen space, and hence are
more easily browsed in the gallery. For example, colored scatter plots
(Figure 4a) are ranked higher than small multiple plots (Figure 5).

Compass maps all of the above features to scalar values and calcu-
lates a weighted sum to derive the effectiveness score s(e) for each
encoding candidate e. We have manually tuned the current weights
and scores for each feature through a series of refinements and tests.
Automatic determination of these parameters remains as future work.

Clustering. To prevent exhaustive enumeration (C5), Compass
groups encoding candidates that map the same variables to similar en-
coding channels listed in Table 4, and suggests only the most effective
view in each group. This includes variants caused by swapping vari-
ables in the positional or facet encodings (producing transposed charts
as depicted in Figure 9d), or by selecting alternative retinal encodings
(e.g., shape instead of color). All the suggested views are also sorted
by the effectiveness score s. Therefore, for each T ∈ Γ, Compass pro-
duces an ordered set of visually different visualizations ET , ranked by
their perceptual effectiveness.

As a result, Compass recommends clusters of visualizations grouped
by their corresponding data tables. To privilege data variation over
design variation (C1), the main gallery presents the top ranked visu-
alization for each table T ∈ Γ. When the user expands a view that
shows data table T , the expanded gallery displays a set of visually dif-
ferent views ET and provides an interface for refining presented views
(Figure 4c).

5.3 Implementation Notes
We implemented Voyager as a web application using the AngularJS
framework. When the user selects a dataset, the application asyn-
chronously loads the data, determines the variable types, and calculates

Data Types Mark Types
Q tick > point > text
(O or N) × (O or N) point > text
Q × N bar > point > text
Q × (T or O) line > bar > point > text
Q × Q point > text

Table 3. Permitted mark types based on the data types of the x and y
channels. N, O, T , Q denote nominal, ordinal, temporal and quantitative
types, respectively.

Positions x, y
Facets column, row
Level of detail color (hue), shape, detail
Retinal measures color (luminance), size

Table 4. Encoding channel groups used to perform clustering.

descriptive statistics. The type inference procedure determines whether
a variable is nominal, ordinal, quantitative or temporal based on primi-
tive types (e.g., integer, string, float), special formats (for dates), and
statistics (e.g., low cardinality integers are treated as ordinal).

In the main gallery (§4.2.2), views are laid out using HTML5’s flex
display. Each view has the same height and has a maximum width. A
view that displays a visualization larger than the view size includes a
local scroll bar, which is activated by hovering for 500ms in order to
disentangle local and global scrolling. By default, Voyager loads up
to a fixed number of views to safeguard application performance, but
users can load more visualizations as they scroll down the page.

6 EVALUATION: VOYAGER VS. POLESTAR

We conducted a user study to contrast recommendation browsing with
manual chart construction, focusing on exploratory analysis of pre-
viously unseen data. We compared Voyager with PoleStar, our own
implementation of a visualization specification interface (Figure 10).

We hypothesized that Voyager would encourage breadth-first con-
sideration of the data, leading to higher coverage of unique variable
combinations. Given its direct control over visual encodings, we ex-
pected PoleStar to be better for targeted depth-first question answering.

6.1 Study Design
Our study followed a 2 (visualization tool) × 2 (dataset) mixed design.
Each participant conducted two exploratory analysis sessions, each
with a different visualization tool and dataset. We counterbalanced the
presentation order of tools and datasets across subjects.

Visualization Tools. Participants interacted with two visualization
tools: Voyager and PoleStar, a manual specification tool. Rather than
use an existing tool such as Tableau, we implemented PoleStar (named
in honor of Polaris [35]) to serve as a baseline interface, allowing
us to control for external factors that might affect the study. Like
Voyager, PoleStar models visualizations using Vega-lite. In fact, any
visualization suggested by Voyager can also be constructed in PoleStar,
ensuring comparable expressivity. PoleStar also features similar UI
elements, including field capsules, bookmarks, and an undo mechanism.

Figure 10 illustrates PoleStar’s interface. The left-hand panel
presents the data schema, listing all variables in the dataset. Next
to the data schema are the encoding shelves, which represent each
encoding channel supported by Vega-lite. Users can drag and drop
a variable onto a shelf to establish a visual encoding. Users can also
modify properties of the data (e.g., data types, data transformations) or
the visual encoding variable (e.g., color palette or sort order) via popup
menus. The mark type can be changed via a drop-down menu. Upon
user interaction, PoleStar generates a new Vega-lite specification and
immediately updates the display.

Datasets. We provided two datasets for participants to explore. One
is a dataset of motion pictures (“movies”) comprising title, director,
genre, sales figures, and ratings from IMDB and Rotten Tomatoes. The
table has 3,201 records and 15 variables (7 nominal, 1 temporal, 8
quantitative). The other dataset is a redacted version of FAA wildlife
airplane strike records (“birdstrikes”). The table has 10,000 records
and 14 variables (8 nominal, 1 geographic, 1 temporal, 4 quantitative).



Fig. 10. PoleStar, a visualization specification tool inspired by Tableau.
Listing 1 shows the generated Vega-lite specification.

We removed some variables from the birdstrikes data to enforce parity
among datasets. We chose these datasets because they are of real-world
interest, are of similar complexity, and concern phenomena accessible
to a general audience.

Participants. We recruited 16 participants (6 female, 10 male), all
students (14 graduate, 2 undergraduate) with prior data analysis ex-
perience. All subjects had used visualization tools including Tableau,
Python/matplotlib, R/ggplot, or Excel.1 No subject had analyzed the
study datasets before, nor had they used Voyager or PoleStar (though
many found PoleStar familiar due to its similarity to Tableau). Each
study session lasted approximately 2 hours. We compensated partici-
pants with a $15 gift certificate.

Study Protocol. Each analysis session began with a 10-minute tuto-
rial, using a dataset distinct from those used for actual analysis. We then
briefly introduced subjects to the test dataset. We asked participants to
explore the data, and specifically to “get a comprehensive sense of what
the dataset contains and use the bookmark features to collect interesting
patterns, trends or other insights worth sharing with colleagues.” To
encourage participants to take the analysis task seriously, we asked
them to verbally summarize their findings after each session using
the visualizations they bookmarked. During the session, participants
verbalized their thought process in a think-aloud protocol. We did not
ask them to formulate any questions before the session, as doing so
might bias them toward premature fixation on those questions. We gave
subjects 30 minutes to explore the dataset. Subjects were allowed to
end the session early if they were satisfied with their exploration.

All sessions were held in a lab setting, using Google Chrome on
a Macbook Pro with a 15-inch retina display set at 2,880 by 1,980
pixels. After completing two analysis sessions, participants completed
an exit questionnaire and short interview in which we reviewed subjects’
choice of bookmarks as an elicitation prompt.

Collected Data. An experimenter (either the first or second author)
observed each analysis session and took notes. Audio was recorded to
capture subjects’ verbalizations for later review. Each visualization tool
recorded interaction logs, capturing all input device and application
events. Finally, we collected data from the exit survey and interview,
including Likert scale ratings and participant quotes.

6.2 Analysis & Results

We now present a selected subset of the study results, focusing on
data variable coverage, bookmarking activity, user survey responses,

1All participants had used Excel. Among other tools, 9 had used Tableau, 13
had used Python/matplotlib and 9 had used R/ggplot.

and qualitative feedback. To perform hypothesis testing over user
performance data, we fit linear mixed-effects models [2]. We include
visualization tool and session order as fixed effects, and dataset and
participant as random effects. These models allow us to estimate the
effect of visualization tool while taking into account variance due to
both the choice of dataset and individual performance. We include
an intercept term for each random effect (representing per-dataset and
per-participant bias), and additionally include a per-participant slope
term for visualization tool (representing varying sensitivities to the
tool used). Following common practice, we assess significance using
likelihood-ratio tests that compare a full model to a reduced model in
which the fixed effect in question has been removed.

6.2.1 Voyager Promotes Increased Data Variable Coverage
To assess the degree to which Voyager promotes broader data explo-
ration, we analyze the number of unique variable sets (ignoring data
transformations and visual encodings) that users are exposed to. While
users may view a large number of visualizations with either tool, these
might be minor encoding variations of a data subset. Focusing on
unique variable sets provides a measure of overall dataset coverage.

While Voyager automatically displays a number of visualizations,
this does not ensure that participants are attending to each of these
views. Though we lack eye-tracking data, prior work indicates that the
mouse cursor is often a valuable proxy [12, 20]. As a result, we analyze
both the number of variable sets shown on the screen and the number
of variable sets a user interacts with. We include interactions such as
bookmarking, view expansion, and mouse-hover of a half-second or
more (the same duration required to activate view scrolling). Analyzing
interactions provides a conservative estimate, as viewers may examine
views without manipulating them. For PoleStar, in both cases we
simply include all visualizations constructed by the user.

We find significant effects of visualization tool in terms of both the
number of unique variable sets shown (χ2(1,N = 32) = 38.056, p <
0.001) and interacted with (χ2(1,N = 32) = 19.968, p < 0.001). With
Voyager, subjects were on average exposed to 69.0 additional variable
sets (over a baseline of 30.6) and interacted with 13.4 more variable
sets (over a baseline of 27.2). In other words, participants were exposed
to over 3 times more variable sets and interacted with 1.5 times more
when using Voyager.

In the case of interaction, we also find an effect due to the presen-
tation order of the tools (χ2(1,N = 32) = 5.811, p < 0.05). Subjects
engaged with an average of 6.8 more variable sets (over the 27.2 base-
line) in their second session.

6.2.2 Bookmark Rate Unaffected by Visualization Tool
We next analyze the effect of visualization tool on the number of
bookmarked views. Here we find no effect due to tool (χ2(1,N = 32) =
0.060, p = 0.807), suggesting that both tools enable users to uncover
interesting views at a similar rate. We do observe a significant effect due
to the presentation order of the tools (χ2(1,N = 32) = 9.306, p < 0.01).
On average, participants bookmarked 2.8 additional views (over a
baseline of 9.7 per session) during their second session. This suggests
that participants learned to perform the task better in the latter session.

6.2.3 Most Bookmarks in Voyager include Added Variables
Of the 179 total visualizations bookmarked in Voyager, 124 (69%)
include a data variable automatically added by the recommendation en-
gine. Drilling down, such views constituted the majority of bookmarks
for 12/16 (75%) subjects. This result suggests that the recommendation
engine played a useful role in surfacing visualizations of interest.

6.2.4 User Tool Preferences Depend on Task
In the exit survey we asked subjects to reflect on their experiences
with both tools. When asked to rate their confidence in the compre-
hensiveness of their analysis on a 7-point scale, subjects responded
similarly for both tools (Voyager: µ = 4.88,σ = 1.36; PoleStar:
µ = 4.56,σ = 1.63; W = 136.5, p = 0.754). Subjects rated both tools
comparably with respect to ease of use (Voyager: µ = 5.50,σ = 1.41;
PoleStar: µ = 5.69,σ = 0.95; W = 126, p = 0.952).



Participants indicated which tool they would prefer for the tasks of
exploration vs. targeted analysis. Subjects roundly preferred Voyager
for exploration (15/16, 94%) and PoleStar for question answering
(15/16, 94%) – a significant difference (χ2(1) = 21.125, p < 0.001).

Finally, we asked subjects to rate various aspects of Voyager. All but
one (15/16, 94%) rated Voyager’s recommendations as “Helpful” or
“Very Helpful”. When asked if Voyager’s inclusion of additional (non-
selected) variables was helpful, 14/16 (88%) responded “Helpful” or
“Very Helpful”, with 2 responding “Neutral”. We also asked participants
to agree or disagree with the statement “The recommendations made by
Voyager need improvement.” Here, 8/16 subjects (50%) agreed with the
statement, 5/16 (31%) were neutral and 3/16 (19%) disagreed. This last
result surprised us, as we expected all subjects would request refined
relevance rankings. In aggregate, these results suggest that though there
remains room for improvement, the current Voyager system already
provides a valuable adjunct to exploratory analysis.

6.2.5 Participant Feedback: Balancing Breadth & Depth
Participants’ comments reinforce the quantitative results. Subjects
appreciated Voyager’s support for broad-based exploration. One said
that “Voyager gave me a lot of options I wouldn’t have thought about
on my own, it encouraged me to look more deeply at data, even data I
didn’t know a lot about”. Another “found Voyager substantially more
helpful in helping me learn and understand the dataset,” while a third
felt Voyager “prompted me to explore new questions in a way that
didn’t derail me from answering follow-up questions.”

Subjects also reflected on the complementary nature of Voyager and
PoleStar for the tasks of breadth- vs. depth-oriented exploration. One
user noted that “with Voyager, I felt like I was scanning the generated
visualizations for trends, while with PoleStar, I had to think first about
what questions I wanted to answer, then make the visualizations for
them.” Another wrote that Voyager “is really good for exploration but
cumbersome for specific tasks.” All but one subject wished to use a
hybrid of both tools in the future. For example, one participant said
that “if I have to just get an overview of the data I would use Voyager
to generate visualizations, and then dive in deep using PoleStar,” while
another envisioned that “I would start with Voyager but want to go and
switch to PoleStar to dive into my question. Once that question was
answered, I would like to switch back to Voyager.”

7 DISCUSSION AND FUTURE WORK

We presented Voyager, a mixed-initiative system to facilitate breadth-
oriented data exploration in the early stages of data analysis. Voyager
contributes a visualization recommender system (Compass) to power a
novel browsing interface that exchanges manual chart specification for
interactive browsing of suggested views. In a user study comparing Voy-
ager with a visualization tool modeled after Tableau (PoleStar), we find
that Voyager encourages broader exploration, leading to significantly
greater coverage of unique variable combinations. The vast majority of
participants (15/16) expressed a preference for using Voyager in future
exploration tasks. This result is encouraging and indicates the value
of improved support for early-stage exploration: PoleStar is based on
a popular interaction model backed by over a decade of research and
industrial use, whereas Voyager is relatively new and untested.

That said, we view Voyager as a first step towards improved systems
that balance automation and manual specification. First, multiple av-
enues for future work lie in perfecting the Voyager interface. Further
iterations could support more navigational facets (e.g., based on chart
types, statistical features or detected anomalies [23]) as well as addi-
tional visualizations (e.g., dots plots annotated with summary statistics,
violin plots, cartographic maps) and data types (e.g., networks). While
we have taken initial steps to support reading of multiple charts in
context (C4), more work is needed to formalize and evaluate this goal.

Additional interaction techniques might further aid analysis. An
obvious candidate is to support brushing & linking within Voyager’s vi-
sualization gallery. Other possibilities may require additional research.
For example, trellis plots are a valuable method for multidimensional
visualization, but often require substantial screen real estate at odds
with a rapidly scannable gallery. An open question (c.f., [13]) is how

to best fit such large plots in small spaces, perhaps via paging and
“scrubbing” interactions common to videos or image collections.

An important avenue for continued research is the design and eval-
uation of more sophisticated (and more scalable [39]) visualization
recommenders. Our current approach is intentionally conservative,
seeking to provide useful recommendations while helping users stay
oriented. The current system is deterministic, based on best practices
formalized as heuristics in a rule-based system. In future work, we
hope to explore probabilistic recommendation models that can learn
improved ranking functions over time (e.g., by updating parameters in
response to user input, including bookmarks and explicit ratings). Such
work also opens up possibilities for studying personalization or domain
adaptation. For example, might different data domains benefit from
differing recommendation strategies?

A clear next step is to better integrate breadth-first and depth-first vi-
sual analysis tools. How might Voyager and PoleStar be most fruitfully
combined? One straightforward idea is that Voyager users could fur-
ther drill-down into plots to enable PoleStar-like refinement. However,
it is not immediately clear if refinements should backpropagate into
broad exploration. How might view refinements inform subsequent
recommendations in a consistent, understandable fashion?

Finally, further empirical work is needed to better understand the
analysis process, including breadth- and depth-oriented strategies. Our
user study, for instance, resulted in rich event logs and think-aloud
transcripts that are ripe for further analysis beyond the scope of this
paper. By recording and modeling analysis activities, we might better
characterize analysts’ strategies and inform tool development.

To support these and other future research questions, the system
components described in this paper (Voyager, Compass, PoleStar,
and Vega-lite) are all freely available as open-source software at
http://vega.github.io. We hope these systems will provide valuable
building blocks and shared reference points for visualization research
and development.
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