
The glass is half full
On the application of an optimistic approach to

concurrency control schemes

Dominik Moritz
dominik.moritz@student.hpi.uni-potsdam.de

Seminar Paper
Beauty is our Business, Summer term 2012

September 15, 2012 (Revised May 25, 2013)
Supervised by Prof. Dr. Felix Naumann

mailto:dominik.moritz@student.hpi.uni-potsdam.de

1 why locking can be problematic

Concurrency control (CC) avoids conflicts by coordinating possibly conflicting
access to shared data from concurrent transactions. A transaction is a sequence of
accesses that by itself preserves consistency. Conflicts among concurrent trans-
actions are prevented by providing a single user system view and guaranteeing
ACID properties [2]. Consider the example of a Wikipedia1 article that is edited
and read by multiple users. Providing a consistent article to readers can be
achieved fairly easy. However, problems may occur when multiple users edit the
same article, sentence or even word.

Conventional CC schemes, such as two-phase locking, prevent concurrent
access by dynamically acquired locks associated with a resource (an article) and a
process (a user). In the case of an article locks have the apparent disadvantage of
deadlocks. A user might start editing an article without committing the transaction
(saving the article). In general, locking approaches have the following inherent
disadvantages:

1. Lock maintenance and deadlock detection require considerable overhead.
In System R the overhead adds up to 10% of the total execution time [5].

2. There is no general-purpose deadlock-free protocol that always provides
high concurrency.

3. Concurrency is substantially lowered if congested nodes (central and often
accessed objects) have to be locked. This problem becomes even more
significant if the locking transaction waits for secondary memory access.

4. Locks cannot be released before a transaction commits, because in the
event of an abortion locks are required to roll back the changes made by
the transaction.

5. Most importantly, locking may be necessary only in the worst case. Locking
hunts for too strong preventive actions. Consider the example of equally
distributed access from two processes on n objects. In such case the prob-
ability for a conflict is P = 1/n and locking is only required every n
transactions. The problem of premature locking particularly applies if
congested nodes are rarely accessed and only few objects are affected by
transactions at a given time.

Optimistic approaches annihilate the mentioned disadvantages by eliminating
locks at least in most cases. This seminar paper is based on a paper by H.T. Kung
and John T. Robinson from 1982 [7] and discusses the basic ideas of optimistic
CC schemes and its applications.

1http://wikipedia.org/

1

http://wikipedia.org/

2 optimistic methods for concurrency control

Premature and unnecessary locking of shared resources is the main disadvantage
of pessimistic CC schemes that check for conflicts before an operation is allowed
to access a resource. In a CC scheme that employs optimistic methods the
burden of CC is deferred until the end of transaction (EOT, prepared to commit)
in contrast to a pessimistic approach where CC normally takes place at the begin
of a transaction (BOT). Checks for conflict cannot be deferred further, because they
have to take place before the transaction is committed. This approach is called
optimistic because it explicitly assumes that the probability of data conflict is
low.

There are two main ideas behind optimistic concurrency control (OCC). First,
since reading can never cause a loss of integrity, queries are not restricted. How-
ever, the results of a read-only query have to be validated before returned,
because the state of the database may have changed during query execution.
The second idea is that writes have to be restricted rigorously to preserve in-
tegrity since writing transactions may affect other transactions. The execution
of transactions under OCC is split into three phases (Figure 1), the read phase,
the validation phase, and the write phase. During the read phase, no global writes
occur and all writes and successive reads take place on tentative copies. Then,
the tentative copies are made global during the write phase if during the vali-
dation phase it can be ensured that committing the changes cannot cause a loss
of integrity. In case a conflict is detected, typically the transaction is aborted
and restarted, although other resolution schemes, such as merging, ignoring,
or logging, are possible. The problem of starvation in an OCC scheme can be
addressed by giving exclusive access to a starving transaction.

Employing OCC increases concurrency, because transactions do not have to
wait for locks to be released before changes can be made. Another advantage
over locking is that OCC schemes are deadlock free because no locks are used.

A transaction in OCC

Read Validate Write

BOT EOT

Sunday, September 2, 12

Figure 1: Three phases of a transaction in OCC

3 read phase and write phase

In this section we briefly discuss how the read and write phase can be imple-
mented in a way that they behave as if basic operations are used directly. The
basic operations: (write, read, edit, create, and delete) are assumed to be supported
by the underlying DBMS.

2

3 .1 Read phase
For each transaction the DBMS has to maintain a transaction buffer that contains
tentative copies of created or edited records. A read or write to a record will
be first redirected to the transaction’s buffer. If the record cannot be found,
the global record will be queried. Modified objects have to be stored in the
transaction buffer and repeated modifications have to take place on the local
objects as well, which requires operations to be rewritten as seen in Listing 1.
The transaction buffer supports abortion of partially executed transactions as
well as completely executed, but conflicting transactions. It also enables simple
commit as described in Section 3.2.

During the read phase, the transaction buffer maintains at least four sets:
the read set, write set, create set and the delete set. These sets are emptied during
the transaction buffer’s initialization in txn_begin. txn_end, as discussed in
Section 4.3 and 4.5, is called when the read phase, being in fact the body of the
user-written transaction that uses the functions in Listing 1, is finished.

1 # n: object/ record
2 # v: value

3 def txn_write(n, v):
4 if n in create_set:
5 write(n, v)
6 elif: n in write_set:
7 write(copies[n], v)
8 else:
9 copies[n] = copy(n)

10 write_set.append(n)
11 write(copies[n], v)

16 def txn_create():
17 n = create()
18 create_set.append(n)
19 return n

20 def txn_read(n):
21 read_set.append(n)
22 if n in write_set:
23 return read(copies[n])
24 else:
25 return read(n)

26 def txn_delete(n):
27 delete_set.append(n)

Listing 1: Basic transaction operations for the read phase

Note that uniqueness constraints are not supported. Also note that direct
modification of global state without having acquired the appropriate locks sug-
gests the idea of snapshot based CC schemes of which one is multi version
concurrency control [1].

A query transaction that solely consists of read operations is automatically
committed after it passes the validation phase. Writing transactions however,
require a write phase as discussed in the next section.

3 .2 Write phase
In the write phase, a writing transaction declares its local transaction buffer
global. Hence, writing does not necessarily mean that records are made persis-
tent but that new records become visible to the global context. Therefore other

3

transactions observe the new values only after the write phase, which requires
the modifying transaction to have passed the validation test.

Splitting the transaction into parts, as described in Section 2, results in knowl-
edge about all affected objects at the end of the write phase, which is a valuable
advantage for recovery mechanisms. Transactions would flush their REDO in-
formation at the end of the write phase [5].

Listing 2 collects the basic operations for the write phase. Note that the clean
up, which deletes the transaction buffer, is also necessary if the transaction
aborts. However, the clean up is not necessarily part of the write phase and can
be executed separately since no other transactions are affected.

1 def commit():
2 for n in write_set:
3 swap(copies[n], n)
4 cleanup()

6 def cleanup():
7 for n in write_set:
8 delete(copies[n])
9 for n in delete_set:

10 delete(n)

Listing 2: Basic operation for the write phase
The commit procedure has to be efficient, because it is often executed serially

to avoid conflicts. In fact, it is very efficient, because all objects are only accessed
be reference and exchanging the object only requires modifying the pointers.
Further optimizations are possible in a way that commit operations that do not
affect each other are written in parallel.

4 validation

Validation is a crucial part of a transaction in an OCC scheme, which guarantees
that the database continues to be in a consistent state. It is run after a transaction
signals EOT meaning that it has finished making changes in the local transaction
buffer and before the local changes are made global. Validation fails if the
transaction would cause a loss of integrity or return wrong data when being
committed.

Read-only transactions can be easily verified by making sure that the read
values are equivalent to the current values. For writing transactions a more
sophisticated approach is necessary to verify correctness. A common criterion
for verifying the correctness of concurrent transactions is that serial equivalence
or serialisability should not be violated. It may be defined as follows [2]:

Let T1, T2...Tn be a set concurrently executed transactions, which can each be
described as functions:

Ti : D → D (1)
dm → dm+1

D is the set of possible database states, meaning an assignment of values to the
variables in the shared data structure. Each transaction has to preserve integrity,

4

meaning that if d ∈ D satisfies all integrity criteria, then T(d) ∈ D satisfies all
integrity criteria as well.

If a concurrent execution transforms a database from its initial state dinitial ∈ D
to a final state d f inal it is considered serialisable iff (if and only if) there is a
permutation π = 1, 2, 3, . . . n that defines an execution order which has the same
result as the concurrent execution. Serialisability may be formalized as

∃π : d f inal = Tπ(n) ◦ Tπ(n−1) ◦ . . . ◦ Tπ(1)(dinitial) (2)

where ◦ denotes functional composition or serial execution. The idea behind
this criterion is that dinitial is considered to be a consistent database state. By
repeated application of the integrity-preserving property of Ti, d f inal has to
satisfy all integrity criteria as well.

Two approaches to validate that serial equivalence is not violated are discussed
in Section 4.2.

Serialisability is the weakest criterion to prove that concurrent execution pre-
serves integrity, which means that if an execution is seralizable then it has to
preserve integrity [6]. Only complete syntactic information is necessary to verify
consistency with the help of the serialisability. However, if additional semantic
information is available, other approaches may be more effective [3].

4 .1 Transaction numbers
In order to verify serialisability it is necessary to determine the order of transac-
tions. This can be handled by explicitly assigning unique transaction numbers
that determine the order of transactions in a serially equivalent schedule. We
define that Ti has to be executed before Tj iff i < j. Consequently the permu-
tation π in Equation 2 is not an arbitrary permutation but well defined. This
definition allows faster validation of serial equivalence since only one order has
to be evaluated, instead of n! possible, arbitrary orders.

Transaction numbers are determined by a global counter that is incremented
when a number is read. They have to be assigned before the transaction is
validated because knowledge of the transaction number of the transaction that
is being validated is required in the approaches in Section 4.3 and 4.5. Assigning
transaction numbers at BOT is considered pessimistic because of issues with long
running transactions. Consider a long running (long read phase) transaction T0
and a short running transaction T1. Both start at roughly the same time but T1
has to wait for the completion of T0’s read phase before it can start its validation
phase since the validation of T1 relies on the knowledge of the write set of T0 (see
Section 4.2). Conceptually, we consider the transaction to execute at transaction
number assignment.

Optimistically deferring assignment until EOT allows immediate validation
without the necessity of waiting for any transactions. Furthermore validation is

5

simplified because some checks can be omitted. Also note that the second part
of Condition 3 is automatically satisfied if transaction numbers are assigned
optimistically.

4 .2 Validation of serial equivalence
Equation 2 can be directly applied as the validation in concurrency control.
Since transaction numbers are explicitly assigned as described in Section 4.1, to
guarantee serialisability with π = 1, 2, 3, . . . each pair of transactions Ti and Tj
with i < j must observe two rules [5].

First, no read dependency. Tj not read any data modified by Ti. Second, no
overwrite. Tj does not overwrite any data that has been written by Tj. In order to
satisfy these rules, one of the following conditions must be true.

Condition 1: Ti completes its write phase before Tj starts its read phase.

Condition 2: The write set of Ti does not intersect the read set of Tj, and Ti
completes its write phase before Tj starts its write phase.

Condition 3: The write set of Ti does not intersect the read set or write set of
Tj, and Ti completes its read phase before Tj completes its read phase.

Condition 1: no time overlap
Serializability - 1st scenario

Read Validate Write

Tj

Ti

Sunday, September 9, 12

Figure 2: First condition

Condition 1 as seen in Fig-
ure 2 expresses that Ti com-
pletes before Tj even starts.
This property clearly is the sit-
uation in a serial schedule and
does not require further veri-
fication.

Condition 2: no dirty read

Serializability - 2nd scenario

WriteSet(Ti) \ ReadSet(Tj) = Ø

Tj

Ti

Sunday, September 9, 12

WriteSet(Ti) ∩ ReadSet(Tj) = ∅ (3)
Figure 3: Second condition

As seen in Figure 3, Condi-
tion 2 states that Ti does not
overwrite any data modified
by Tj (no lost update) and Tj
does not read any modified
data (no dirty read).

6

Condition 3: no data overlap

Serializability - 3rd scenario

WriteSet(Ti) \ (ReadSet(Tj) [WriteSet(Tj)) = Ø

Tj

Ti

Sunday, September 9, 12

WriteSet(Ti) ∩ (ReadSet(Tj)∪
WriteSet(Tj)) = ∅ (4)

Figure 4: Third condition

Condition 3 as seen in Figure 4

can be summarized similar to
Condition 2. In contrast, it is not
required that Ti finished writing
before Tj starts writing. In fact it
is only required that Tj operates
on unmodified data.

4 .3 Serial validation
In this section we look at an implementation of Conditions 1 and 2 in which
write phases never overlap. This can be implemented by planting transaction
number assignment, validation and the write phase in a critical section which
is marked by surrounding < ... >. The implementation for such an approach is
shown in Listing 3. In txn_begin, in addition to clearing the transaction buffer
as explained in Section 3.1, a start_tn is read from the global counter (tnc).

1 def txn_end():
2 < finish_tn = tnc; valid = true
3 for t in range(start_tn, finish_tn):
4 if t.write_set.intersection(read_set):
5 valid = false
6 if valid:
7 commit()
8 assign_transaction_number() >
9 cleanup()

10 else:
11 abort()

Listing 3: Implementation of serial validation.

Because of Condition 1, committed transactions do not have to be considered.
Omitting transactions is done by only taking transactions between start_tn and
finish_tn into account. Condition 2 is verified by confirming that no objects
are read that have been written by a previous transaction.

Note that transaction numbers are only assigned if validation has been suc-
cessful, which has the same effect as assigning it at the beginning of txn_end.
The only difference is that no transaction numbers are assigned to aborted
transactions.

Staging some checks outside the critical section is a second optimization that
can be made. The idea behind this optimization is to check intersection with
the write sets of transactions until a mid_tn and only check the remaining
transactions in the critical section as can be seen in Listing 4. Staging can repeated
multiple times reducing the number of affected transactions in each step.

7

1 def txn_end():
2 mid_tn = tnc; valid = true
3 for t in range(start_tn, mid_tn): # 1st stage
4 if t.write_set.intersection(read_set):
5 valid = false
6 < finish_tn = tnc
7 for t in range(mid_tn, finish_tn): # 2nd stage
8 if t.write_set.intersection(read_set):
9 valid = false

10 [...] # same as in listing 3

Listing 4: Staging as optimization of serial validation

In order to achieve higher concurrency, which becomes necessary if the write
phase is long compared to the read phase (which is not necessarily the case), a
modified approach is necessary. Such an approach that uses all three conditions
is presented in Section 4.5.

4 .4 Validating queries
Queries are read only transactions that lack a write phase resulting in no need
to be assigned a transaction number. This implies that validation of queries
can take place outside a critical section. Without a critical section, the staging
optimizations from Section 4.3 or parallel validation as in Section 4.5 are not
necessary. Validation in query-dominant systems often consists solely of reading
finish_tn and comparing it to start_tn. Since both numbers would be the
same, no further actions are necessary making OOC optimal for such systems.

4 .5 Parallel validation
In this section we examine parallel validation which allows greater concurrency,
however at higher total costs, compared to serial validation. It takes all three
condition from Section 4.2 into account and thus allows interleaved writes. This
property is achieved by checking the intersection of the write set with the write
and read sets of all transactions that could potentially modify the same objects.
These transactions that have completed their read phase but have not yet finished
their write phase are called active transactions.

The idea behind this implementation is that at least one of two transactions
in their validation phase that conflict with one another is invalidated. Note that
only modifications to the active and transaction numbers have to be placed in a
critical section to maintain the invariant that the active set contains only previous
transactions.

Unfortunately the above implementation entails the possibility of invalidating
a transaction by a transaction that itself is invalidated eventually. A partial
solution is reducing the size of the active set by staging checks (analogous to

8

1 def txn_end():
2 < finish_tn = tnc
3 finish_active = get_active_transactions()
4 set_active()
5 valid = true >
6 for t in range(start_tn, finish_tn):
7 if t.write_set.intersection(read_set):
8 valid = false
9 for t in finish_active:

10 if t.write_set.intersection(read_set.union(write_set)):
11 valid = false
12 if valid:
13 commit()
14 < assign_transaction_number()
15 set_inactive() >
16 cleanup()
17 else:
18 < set_inactive() >
19 abort()

Listing 5: Implementation of parallel validation

Section 4.3) before setting the transaction active. A more sophisticated solution
is to wait for causing transactions to finish and only abort if the transaction
successfully commits.

5 conclusions

OCC can be seen oppositional to locking in terms of conceptual differences
as pointed out in Section 2, which leads to the characteristics discussed in
Section 5.1. Because of its advantages over locking, OCC has many applications
as described in Section 5.2.

5 .1 Comparison with pessimistic methods
Transactions in a locking approach are controlled by waiting for locks and or-
dered by access time. In contrast, in an optimistic CC scheme transactions are
controlled by backup and ordered by number assignment. This difference leads
to deadlock being the major disadvantage of locking and starvation the major
flaw of OCC. In a blocking scheme conflicts with any possible transaction are pre-
vented while in OCC a transaction will be restarted if there is any possibility of
having a non-serialisable schedule only with actual transactions. Consequently,
an optimistic approach is not inherently worse than a locking scheme validation
will only fail if locking would have been necessary in a locking approach.

OCC may well be superior to locking in systems where conflicts are unlikely,
such as query dominant systems where the overhead of CC becomes negligible

9

as described in Section 4.4. However, conflicts may not be as rare as suggested,
since there are hot spots in realistic access patterns [4]. Therefore restarting is
not always preferred over locking.

5 .2 Applications and outlook
CC problems arise in operating systems, communication systems, and database
systems, among others. Therefore OCC methods are applied in a variety of
systems, such as MediaWiki (and Wikipedia), version control systems, and many
major database systems. Popular database systems that implement OCC schemes
are PostgreSQL, MySQL, ElasticSearch, CouchDB, and DB 2. However, most
systems use derived, snapshot based OCC schemes; the most renowned being
Multi Version Concurrency Control (MVCC) [1].

Overall, OCC is an efficient method for CC, especially in query dominant
systems. Parallel validation as presented in Section 4.5 appears to be an efficient
and parallelisable implementation to validate that execution preserves integrity.
Even though, there are cases with high probability for conflicts in which an
optimistic approach is not reasonable, OCC has gained a position as a very
effective CC scheme with many practical applications.

references

[1] Philip A. Bernstein and Nathan Goodman. Concurrency control in dis-
tributed database systems. ACM Comput. Surv., 13(2):185–221, June 1981.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[3] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic knowledge of
transactions to increase concurrency. ACM Trans. Database Syst., 14(4):503–
525, December 1989.

[4] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang. The
stretched exponential distribution of internet media access patterns. In
Proceedings of the twenty-seventh ACM symposium on Principles of distributed
computing, PODC ’08, pages 283–294, New York, NY, USA, 2008. ACM.

[5] Theo Härder. Observations on optimistic concurrency control schemes. Inf.
Syst., 9(2):111–120, November 1984.

[6] H. T. Kung and C. H. Papadimitriou. An optimality theory of concurrency
control for databases. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, SIGMOD ’79, pages 116–126, New York, NY,
USA, 1979. ACM.

[7] H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. In Proceedings of the fifth international conference on Very Large Data
Bases - Volume 5, VLDB ’79, pages 351–351. VLDB Endowment, 1979.

10

	1 Why locking can be problematic
	2 Optimistic methods for Concurrency Control
	3 Read phase and write phase
	3.1 Read phase
	3.2 Write phase

	4 Validation
	4.1 Transaction numbers
	4.2 Validation of serial equivalence
	4.3 Serial validation
	4.4 Validating queries
	4.5 Parallel validation

	5 Conclusions
	5.1 Comparison with pessimistic methods
	5.2 Applications and outlook

